Skip to main content

Advertisement

Log in

Reduced graphene oxide incorporated NiWO4 for high-performance energy storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, reduced graphene oxide (RGO) was incorporated into NiWO4 to obtain the RGO/NiWO4 composites by a facile hydrothermal method. The supercapacitive properties of these composites were studied by cyclic voltammetry and galvanostatic charge/discharge. It is surprised that the RGO/NiWO4 composite exhibits twice specific capacitance and better stability than NiWO4. RGO acts as the conductive substrate for NiWO4 nanoparticles, which can not only inhibit the aggregations of the NiWO4 nanoparticles and RGO flakes to obtain the high specific surface area, but also improve the electrical conductivity to accelerate the charge transmission. Moreover, RGO is also an electrical double layer capacitor electrode material. Therefore, the RGO/NiWO4 composite is a good supercapacitive material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Zhao, B.M. Sanchez, P.J. Dobson et al., The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3, 839–855 (2011)

    Article  Google Scholar 

  2. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  Google Scholar 

  3. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  4. J.G. Wang, Y. Yang, Z.H. Huang et al., MnO2/polypyrrole nanotubular composites: reactive template synthesis, characterization and application as superior electrode materials for high-performance supercapacitors. Electrochim. Acta 130, 642–649 (2014)

    Article  Google Scholar 

  5. Y. Cao, Y. Xiao, Y. Gong et al., One-pot synthesis of MnOOH nanorods on graphene for asymmetric supercapacitors. Electrochim. Acta 127, 200–220 (2014)

    Article  Google Scholar 

  6. S.K. Meher, P. Justin, G.R. Rao, Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl. Mater. Interfaces 3, 2063–2073 (2011)

    Article  Google Scholar 

  7. X.H. Xia, J.P. Tu, Y.J. Mai et al., Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem. 21, 9319–9325 (2011)

    Article  Google Scholar 

  8. J. Zhu, W. Shi, N. Xiao et al., Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 4, 2769–2774 (2012)

    Article  Google Scholar 

  9. M.C. Liu, L.B. Kong, C. Lu et al., Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors. Mater. Lett. 94, 197–200 (2013)

    Article  Google Scholar 

  10. K.K. Purushothaman, M. Cuba, G. Muralidharan, Supercapacitor behavior of α-MnMoO4 nanorods on different electrolytes. Mater. Res. Bull. 47, 3348–3351 (2012)

    Article  Google Scholar 

  11. Q.F. Wang, B. Liu, X.F. Wang et al., Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. J. Mater. Chem. 22, 21647–21653 (2012)

    Article  Google Scholar 

  12. H. Jiang, J. Ma, C.Z. Li, Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem. Commun. 48, 4465–4467 (2012)

    Article  Google Scholar 

  13. Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy Environ. Sci. 4, 1113–1132 (2011)

    Article  Google Scholar 

  14. P.G. Ren, D.X. Yan, X. Ji et al., Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22, 055705 (2011)

    Article  Google Scholar 

  15. W.S. Hummer, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  16. X.Y. Xu, T. Wu, F.L. Xia, Y. Li et al., Redox reaction between graphene oxide and In powder to prepare In2O3/reduced graphene oxide hybrids for supercapacitors. J. Power Sources 266, 282–290 (2014)

    Article  Google Scholar 

  17. Z.H. Liu, Z.M. Wang, X.J. Yang et al., Intercalation of organic ammonium ions into layered graphite oxide. Langmuir 18, 4926–4932 (2002)

    Article  Google Scholar 

  18. H.M.A. Hassan, V. Abdelsayed, A.E.R.S. Khder et al., Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19, 3832–3837 (2009)

    Article  Google Scholar 

  19. J. Joy, N. Jaya, Structural, magnetic and optical behavior of pristine and Yb doped CoWO4 nanostructure. J. Mater. Sci.: Mater. Electron. 24, 1788–1795 (2013)

    Google Scholar 

  20. S. Stankovich, D.A. Dikin, R.D. Piner et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  21. F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)

    Article  Google Scholar 

  22. S.L. Gonza´lez-Corte´s, T.C. Xiao, P.M.F.J. Costa et al., Relevance of the Co1-xNixWO4 wolframite-type mixed oxide compositions on the synthesis and catalytic properties of W-based carbides. J. Mol. Catal. A: Chem. 238, 127–134 (2005)

    Article  Google Scholar 

  23. J.G. Wang, Y. Yang, Z.H. Huang et al., Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors. J. Mater. Chem. 22, 16943–16949 (2012)

    Article  Google Scholar 

  24. I. Kotutha, E. Swatsitang, W. Meewassana et al., One-pot hydrothermal synthesis, characterization, and electrochemical properties of rGO/MnFe2O4 nanocomposites. Jpn. J. Appl. Phys. 54, 06FH10-1–06FH10-7 (2015)

    Article  Google Scholar 

  25. Y.G. Wang, L. Yu, Y.Y. Xia, Electrochemical capacitance performance of hybrid supercapacitors based on Ni(OH)2 carbon nanotube composites and activated carbon. J. Electrochem. Soc. 153, A743–A748 (2006)

    Article  Google Scholar 

  26. P. He, K. Yang, W. Wang et al., Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode. Russ. J. Electrochem. 49, 359–364 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, X., Wang, J. Reduced graphene oxide incorporated NiWO4 for high-performance energy storage. J Mater Sci: Mater Electron 27, 11613–11622 (2016). https://doi.org/10.1007/s10854-016-5293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5293-8

Keywords

Navigation