Skip to main content
Log in

Kesterite based thin film absorber layers from ball milled precursors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The existing thin film technology involves rare earth and toxic materials. Cu2ZnSnS4, its selenide and sulfo selenide analogues have acquired as the most promising alternate absorber material group in thin film technology due to the abundance and non toxic constituent elements. We present a facile, green and low cost method for synthesis of CZTS/(Se) films. Precursor powders using Cu, Zn, Sn, S and Se, was prepared by ball milling. Starting with ball milled metallic precursor powders we synthesized kieserite thin films by doctor blade coating process and subsequent annealing. Doctor blade coating method is one of the cheapest non toxic non vacuum based chemical deposition processes. A comparative study of ball milled powder and films prepared from the precursors has been presented and interesting aspects of structure, morphology and composition were explored after ball milling, and films formed after annealing. Chalcogens (S or Se) plays an important role in the construction of tetragonal phase. A combined TGA–DSC, X-ray diffraction, Raman, TEM, EDX and UV–Vis–NIR study showed marked change in film property after annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.R. Kodigala, in Thin Film Solar Cells from Earth Abundant Materials: Growth and Characterization of Cu 2 (ZnSn)(SSe) 4 Thin Films and Their Solar Cells. Fabrication and Characterization of Cu2ZnSn(S1−xSex)4 Thin-Film Solar Cells, chap. 5, 1st edn. (Elsevier, 2013), pp. 141–171

  2. S.R. Kodigala, in Thin Film Solar Cells from Earth Abundant Materials: Growth and Characterization of Cu 2 (ZnSn)(SSe) 4 Thin Films and Their Solar Cells. Growth of Quaternary and Pentanary Cu2ZnSn(S1−xSex)4 Absorbers, chap. 3, 1st edn. (Elsevier, 2013), pp. 37–65

  3. K.L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12, 69–92 (2004)

    Article  Google Scholar 

  4. S. Abermann, Non-vacuum processed next generation thin film photovoltaics: towards marketable efficiency and production of CZTS based solar cells. Sol. Energy 94, 37–70 (2013)

    Article  Google Scholar 

  5. S. Siebentritt, S. Schorr, Kesterites—a challenging material for solar cells. Prog. Photovolt. Res. Appl. 20, 512–519 (2012)

    Article  Google Scholar 

  6. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014)

    Article  Google Scholar 

  7. T. Kato, N. Sakai, H. Sugimoto, Efficiency improvement of Cu2ZnSn (S, Se) 4 submodule with graded bandgap and reduced backside ZnS segregation. 40th Photovoltaic Specialists Conference (PVSC), IEEE, 0844–0846 (2014)

  8. I. Repinsa, C. Bealla, N. Voraa, C. DeHarta, D. Kuciauskasa, P. Dippoa, B. Toa, J. Manna, W.-C. Hsub, A. Goodricha, R. Noufia, Co-evaporated Cu2ZnSnSe4 films and devices. Sol. Energy Mater. Sol. Cells 101, 154–159 (2012)

    Article  Google Scholar 

  9. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95(2011), 1421–1436 (2011)

    Article  Google Scholar 

  10. V.A. Akhavan, B.W. Goodfellow, M.G. Panthani, C. Steinhagen, T.B. Harvey, C.J. Stolle, B.A. Korgel, Colloidal CIGS and CZTS nanocrystals: a precursor route to printed photovoltaics. J. Solid State Chem. 189, 2–12 (2012)

    Article  Google Scholar 

  11. S. Chen, A. Walsh, J.-H. Yang, X.G. Gong, L. Sun, P.-X. Yang, J.-H. Chu, S.H. Wei, Compositional dependence of structural and electronic properties of Cu2ZnSn (S, Se) 4 alloys for thin film solar cells. Phys. Rev. B 83, 125201 (2011)

    Article  Google Scholar 

  12. H. Xiea, M. Dimitrievska, X. Fontané, Y. Sánchez, S. López-Marino, V. Izquierdo-Roca, V. Bermúdez, A. Pérez-Rodrígueza, E. Saucedo, Formation and impact of secondary phases in Cu-poor Zn-rich Cu2ZnSn(S1−ySey)4 (0 ≤ y≤1) based solar cells. Sol. Energy Mater. Sol. Cells 140, 289–298 (2015)

    Article  Google Scholar 

  13. C. Li, B. Yao, Y. Li, Z. Xiao, Z. Ding, H. Zhao, L. Zhang, Z. Zhang, Fabrication, characterization and application of Cu2ZnSn (S, Se) 4 absorber layer via a hybrid ink containing ball milled powders. J. Alloy. Compd. 643, 152–158 (2015)

    Article  Google Scholar 

  14. T. Schnabel, M. Löw, E. Ahlswede, Vacuum-free preparation of 7.5% efficient Cu2ZnSn (S, Se) 4 solar cells based on metal salt precursors. Sol. Energy Mater. Sol. Cells 117, 324–328 (2013)

    Article  Google Scholar 

  15. T.S. Shyju, S. Anandhi, R. Suriakarthick, R. Gopalakrishnan, P. Kuppusami, Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications. J. Solid State Chem. 227, 165–177 (2015)

    Article  Google Scholar 

  16. C.-J. Hsu, H.-S. Duan, W. Yang, H. Zhou, Y. Yang, Benign solutions and innovative sequential annealing processes for high performance Cu2ZnSn (Se, S) 4 photovoltaics. Adv. Energy Mater. 4, 1301278 (2014)

    Article  Google Scholar 

  17. B. Flynn, W. Wang, C.-H. Chang, G.S. Herman, Microwave assisted synthesis of Cu2ZnSnS4 colloidal nanoparticle inks. Phys. Status Solidi A 209(11), 2186–2194 (2012)

    Article  Google Scholar 

  18. K. Woo, Y. Kim, J. Moon, A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy Environ. Sci. 5, 5340 (2012)

    Article  Google Scholar 

  19. Y. Liu, M. Ge, Y. Yue, Y. Sun, Y. Wu, X. Chen, N. Dai, Colloidal Cu2ZnSnS4 nanocrystals generated by a facile route using ethylxanthate molecular precursors. Phys. Status Solidi RRL 5(3), 113–115 (2011)

    Article  Google Scholar 

  20. C. Wang, C. Zhu, T. Zhang, Preparation and characterization of Cu2ZnSn (S, Se) 4 thin film as photovoltaic absorber material for solar cells. Mater. Lett. 108, 62–64 (2013)

    Article  Google Scholar 

  21. Z. Sebouia, A. Gassoumia, Y. Cuminalb, N. Kamoun-Turkia, Effect of annealing process on the properties of Cu2ZnSnS4 thin films. Superlattices Microstruct. 75, 586–592 (2014)

    Article  Google Scholar 

  22. S.M. Lee, Y.S. Cho, Characteristics of Cu2ZnSnSe4 and Cu2ZnSn (Se, S) 4 absorber thin films prepared by post selenization and sequential sulfurization of co-evaporated Cu–Zn–Sn precursors. J. Alloy. Compd. 579(2013), 279–283 (2013)

    Article  Google Scholar 

  23. P.M.P. Saloméa, J. Malaquias, P.A. Fernandes, M.S. Ferreira, A.F. da Cunha, J.P. Leitão, J.C. Gonzálezc, F.M. Matinag, Growth and characterization of Cu2ZnSn (S, Se) 4 thin films for solar cells. Sol. Energy Mater. Sol. Cells 101, 147–153 (2012)

    Article  Google Scholar 

  24. K. Woo, K. Kim, Z. Zhong, I. Kim, Y. Oh, S. Jeong, J. Moon, Non-toxic ethanol based particulate inks for low temperature processed Cu2ZnSn(S, Se)4 solar cells without S/Se treatment. Sol. Energy Mater. Sol. Cells 128, 362–368 (2014)

    Article  Google Scholar 

  25. K.V. Gurav, S.W. Shin, U.M. Patil, M.P. Suryawanshi, S.M. Pawar, M.G. Gang, S.A. Vanalakar, J.H. Yun, J.H. Kim, Improvement in the properties of CZTSSe thin films by selenizing single-step electrodeposited CZTS thin films. J. Alloy. Compd. 631, 178–182 (2015)

    Article  Google Scholar 

  26. A.E. Zaghi, M. Buffière, G. Brammertze, M. Batuk, N. Lenaers, B. Knikni, J. Hadermann, M. Meurise, J. Poortmans, J. Vleugels, Mechanical synthesis of high purity Cu–In–Se alloy nanopowder as precursor for printed CISe thin film solar cells. Adv. Powder Technol. 25, 1254–1261 (2014)

    Article  Google Scholar 

  27. Z. Chen, L. Han, L. Wan, C. Zhang, H. Niu, J. Xu, Cu2ZnSnSe4 thin films prepared by selenization of co-electroplated Cu–Zn–Sn precursors. Appl. Surf. Sci. 257, 8490–8492 (2011)

    Article  Google Scholar 

  28. Q.-Y. Wen, Y. Li, J. Wang, J.-J. Yan, C.-W. Wang, Growth of void-free Cu2ZnSn (S, Se) 4 thin film by selenization Cu2ZnSnS4 precursor film from ethylene glycol-based solution. Superlattices Microstruct. (2015). doi:10.1016/j.spmi.2015.05.023

    Google Scholar 

  29. G. Chen, C. Yuan, J. Liu, Y. Deng, G. Jiang, W. Liu, C. Zhu, Low cost preparation of Cu2ZnSnS4 and Cu2ZnSn (SxSe1−x) 4 from binary sulfide nanoparticles for solar cell application. J. Power Sour. 262, 201–206 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the project #DST/TM/SERI/2K11/42 funded by Department of Science and Technology (DST), New Delhi. The Authors would like to thank Dr. N. B. Chaure, (University of Pune) for TEM characterization. The authors are also thankful to Prof. K. T. Ramakrishna Reddy (S. V. University, Tirupati) for his support with Raman scattering measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udai P. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pani, B., Pillai, S. & Singh, U.P. Kesterite based thin film absorber layers from ball milled precursors. J Mater Sci: Mater Electron 27, 12412–12417 (2016). https://doi.org/10.1007/s10854-016-5205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5205-y

Keywords

Navigation