Skip to main content
Log in

Nanostructured CaCu3Ti4O12 for environmental remediation through visible light active catalysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The unresolved issue of generating well defined nanostructure of calcium copper titanate, a well-known dielectric perovskite, has been overcome through simple molten salt approach. This technique provides a one-step, convenient, low-cost, nontoxic, and mass-production route for the synthesis of nanostructures of complex oxides with important scientific and technological applications. The as-synthesized powder, characterized by powder X-ray diffraction, field emission scanning electron microscopy and high resolution transmission electron microscopy was confirmed to be a phase pure calcium copper titanate nanocubes with edge length around 180 nm having sharp edges. The photocatalytic activity of the as-prepared samples was evaluated by the degradation of methyl orange aqueous solution under visible light irradiation and exhibited higher dye degradation ability compared to its bulk counterpart. The enhanced photocatalytic activity could be attributed to increase in both the surface area as well as photo-generated carrier life time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  Google Scholar 

  2. Y. Liu, B. Zhou, J. Bai, J. Li, J. Zhang, Q. Zheng, X. Zhu, W. Cai, Appl. Catal. Environ. 89, 142 (2009)

    Article  Google Scholar 

  3. G.S. Li, D.Q. Zhang, J.C. Yu, Chem. Mater. 20, 3983 (2008)

    Article  Google Scholar 

  4. M. Shang, W. Wang, S. Sun, L. Zhou, L. Zhang, J. Phys. Chem. C 112, 10407 (2008)

    Article  Google Scholar 

  5. M. Machida, J. Yabunaka, T. Kijima, Chem. Mater. 12, 812 (2000)

    Article  Google Scholar 

  6. M. Maddahfar, M. Ramezani, M. Sadeghi, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 26, 7745 (2015)

    Article  Google Scholar 

  7. M. Ramezani, S. Mostafa Hosseinpour-Mashkani, A. Sobhani-Nasab, H.G. Estarki, J. Mater. Sci. Mater. Electron. 26, 7588 (2015)

    Article  Google Scholar 

  8. Z.B. Lei, W.S. You, M.Y. Liu, G.H. Zhou, T. Takata, M. Hara, K. Domen, C. Li, Chem. Commun. 17, 2142 (2003)

    Article  Google Scholar 

  9. M. Sun, Y. Jiang, F. Li, M. Xia, B. Xue, D. Liu, Mater. Transact. 51, 1981 (2010)

    Article  Google Scholar 

  10. J. Ding, X. Lü, H. Shu, J. Xie, H. Zhang, Mater. Sci. Eng., B 171, 31 (2010)

    Article  Google Scholar 

  11. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  12. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000)

    Article  Google Scholar 

  13. S.Y. Chung, I.D. Kim, S.J.L. Kang, Nat. Mater. 3, 774 (2004)

    Article  Google Scholar 

  14. I.D. Kim, A. Rothschild, T. Hyodo, H.L. Tuller, Nano Lett. 6, 193 (2006)

    Article  Google Scholar 

  15. R. Parra, R. Savu, L.A. Ramajo, M.A. Ponce, J.A. Varela, M.S. Castro, P.R. Bueno, E. Joanni, J. Solid State Chem. 183, 1209 (2010)

    Article  Google Scholar 

  16. C.L. Kretly, A.F.L. Almeida, P.B.A. Fechine, R.S. De Oliveira, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 15, 657 (2004)

    Article  Google Scholar 

  17. M. Li, X.L. Chen, D.F. Zhang, W.Y. Wang, W.J. Wang, Sens. Actuators, B 147, 447 (2010)

    Article  Google Scholar 

  18. R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto, S. Sprissler, S. Lin, AIP Adv. 3, 062126 (2013)

    Article  Google Scholar 

  19. J.H. Clark, M.S. Dyer, R.G. Palgrave, C.P. Ireland, J.R. Darwent, J.B. Claridge et al., J. Am. Chem. Soc. 133, 1016 (2011)

    Article  Google Scholar 

  20. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2003)

    Article  Google Scholar 

  21. M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, F. Mohandes, S. Gholamrezaei, J. Mater. Sci. 26, 2810 (2015)

    Google Scholar 

  22. C. Masingboon, P. Thongbai, S. Maensiri, T. Yamwong, S. Seraphin, Mater. Chem. Phys. 109, 262 (2008)

    Article  Google Scholar 

  23. S. Mostafa Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, J. Mater. Sci. Mater. Electron. 26, 6086 (2015)

    Article  Google Scholar 

  24. P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramírez, W.C. Ribeiro, E. Longo, J.A. Varela, J. Phys. D Appl. Phys. 42, 055404 (2009)

    Article  Google Scholar 

  25. P. Kubelka, F. Munk, Zeitschrift für Technische Physik 12, 593 (1931)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the University Grants Commission, The Government of India [Ref. No. F.PSW-007/14-15(ERO) dated 02/02/2015 (XII plan)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, A., Chattopadhyay, K.K. Nanostructured CaCu3Ti4O12 for environmental remediation through visible light active catalysis. J Mater Sci: Mater Electron 27, 10393–10398 (2016). https://doi.org/10.1007/s10854-016-5125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5125-x

Keywords

Navigation