Skip to main content
Log in

Interaction of lead selenide with reduced graphene oxide: investigation through cyclic voltammetry and spectroscopy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Interaction between reduced graphene oxide (rGO) and PbSe quantum dots (Q-PbSe) have been studied by Cyclic Voltammetry (CV), Raman and FTIR spectroscopy. For that, the composites of Q-PbSe and rGO have been prepared by a one pot synthesis method. From the TEM analysis, Q-dots decorated on graphene layer have been concluded. Cyclic Voltammetry techniques have been employed to determine the change in quasi-particle gap and band edge parameters of Q-PbSe due to the interaction with rGO. The results were corroborated with FTIR and Raman analysis where substantial change in IR bands and shift in the Raman peaks have been observed, due to the interaction between Q-PbSe and rGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.V. Kamat, Quantum dot solar cell, next big thing in photovoltaic’s. J Phys. Chem. Lett. 4, 908–918 (2013)

    Article  Google Scholar 

  2. E.O. Semonin, J.M. Luther, S. Choi, S. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011)

    Article  Google Scholar 

  3. R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in pbse nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004)

    Article  Google Scholar 

  4. J.M. Luther, M.C. Beard, Q. Song, M. Law, R.J. Ellingson, A.J. Nozik, Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 7, 1779–1784 (2007)

    Article  Google Scholar 

  5. R.D. Schaller, M. Sykor, S. Jeong, V.I. Klimov, High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. J. Phys. Chem. B 110, 25332–25338 (2006)

    Article  Google Scholar 

  6. J.M. Luther, M. Law, M.C. Beard, Q. Song, M.O. Reese, R.J. Ellingson, A.J. Nozik, Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488 (2008)

    Article  Google Scholar 

  7. E.H. Sargent, Infrared photovoltaics made by solution processing. Nat. Photonics 3(6), 325–331 (2009)

    Article  Google Scholar 

  8. P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Beyond photovoltaics: semiconductor nano architectures for liquid-junction solar cells. Chem. Rev. 110, 6664–6688 (2010)

    Article  Google Scholar 

  9. A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson, Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010)

    Article  Google Scholar 

  10. G. Hodes, Comparison of Dye- and Semiconductor-Sensitized Porous Nano crystalline Liquid Junction Solar Cells. J. Phys. Chem. C 112, 17778–17787 (2008)

    Article  Google Scholar 

  11. P.V. Kamat, Graphene-based nano assemblies for energy conversion. J. Phys. Chem. Lett. 2, 242–251 (2011)

    Article  Google Scholar 

  12. C. Namchul, B.T. Kaushik, S. Ram, O. Yudhisthira, N.C. Tymish, L. Alexander, N.P. Kwang-Sup, Efficient photo detection at IR wavelengths by incorporation of PbSe–carbon-nanotube conjugates in a polymeric nanocomposite. Adv. Mater. 19, 232 (2007)

    Article  Google Scholar 

  13. Y. Lin, K. Zhang, W. Chen, Y. Liu, Z. Geng, J. Zeng, N. Pan, L. Yan, X. Wang, J.G. Hou, Dramatically enhanced photo response of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS Nano 4, 3033 (2010)

    Article  Google Scholar 

  14. K.K. Manga, S. Wang, M. Jaiswal, Q. Bao, K.P. Loh, High-Gain Graphene-Titanium Oxide Photoconductor Made from Inkjet Printable Ionic Solution. Adv. Mater 22, 5265 (2010)

    Article  Google Scholar 

  15. K.K. Manga, J. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, K.P. Loh, High-performance broadband photo detector using solution-processible PbSe–TiO2–graphene hybrids. Adv. Mater. 24, 1697–1702 (2012)

    Article  Google Scholar 

  16. H.J. Shin, W.M. Choi, D. Choi, G.H. Han, S.M. Yoon, H.K. Park, S.W. Kim, Y.W. Jin, S.Y. Lee, J.M. Kim, J.Y. Choi, Y.H. Lee, Control of electronic structure of graphene by various dopants and their effects on a nano generator. J. Am. Chem. Soc. 132, 15603–15609 (2010)

    Article  Google Scholar 

  17. P. Liljeroth, L. Jdira, K. Overgaag, B. Grandidier, S. Speller, D. Vanmaekelbergh, Can scanning tunneling spectroscopy measure the density of states of semiconductor quantum dots? Phys. Chem. Chem. Phys. 8, 3845–3850 (2006)

    Article  Google Scholar 

  18. J. Jasieniak, M. Califano, S.E. Watkins, Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 5(7), 5888–5902 (2011)

    Article  Google Scholar 

  19. S.N. Inamdar, P.P. Ingole, S.K. Haram, Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry. Chem. Phys. Chem. 9, 257 (2008)

    Google Scholar 

  20. S.K. Haram, A.K. Kshirsagar, Y.D. Gujarathi, P.P. Ingole, O.A. Nene, G.B. Markad, S.P. Nanavati, Quantum confinement in CdTe quantum dots: investigation through cyclic voltammetry supported by density functional theory (DFT). J. Phys. Chem. C 115, 6243–6249 (2011)

    Article  Google Scholar 

  21. P.I. Ingole, G.B. Markad, D. Saraf, L. Tatikondewar, O. Nene, A. Kshirsagar, S.K. Haram, Band gap bowing at nanoscale: investigation of CdSxSe1–x alloy quantum dots through cyclic voltammetry and density functional theory. J. Phys. Chem. C 117, 7376–7383 (2013)

    Article  Google Scholar 

  22. G.B. Markad, S. Battu, S. Kapoor, S.K. Haram, Interaction between quantum dots of CdTe and reduced graphene oxide: investigation through cyclic voltammetry and spectroscopy. J Phys. Chem. C 117(40), 20944–20950 (2013)

    Article  Google Scholar 

  23. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  Google Scholar 

  24. R. Chadha, N. Biswas, G.B. Markad, S.K. Haram, T. Mukherjee, S. Kapoor, Interaction of reduced graphene oxide with free radicals and silver clusters. Chem. Phy. Lett. 529, 54–58 (2012)

    Article  Google Scholar 

  25. William W. Yu, Joshua C. Falkner, Bertram S. Shih, Vicki L. Colvin, Preparation and characterization of monodispersed PbSe semiconductor nanocrystals in a non coordinating solvent. Chem. Mater. 16, 3318–3322 (2004)

    Article  Google Scholar 

  26. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edn. (Wiley, New York, 2001), p. 290

    Google Scholar 

  27. R. Voggu, B. Das, C.S. Rout, C.N.R. Rao, Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using raman spectroscopy and cognate techniques. J. Phys. Condens. Matter 20, 472204 (2008)

    Article  Google Scholar 

  28. A. Tayyebi, M.M. Tavakoli, M. Outokesh, A. Shafiekhani, A. Simchi, Supercritical synthesis and characterization of graphene–PbS quantum dots composite with enhanced photovoltaic properties. Ind. Eng. Chem. Res. 54, 7382–7392 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Department of Physics, Savitribai Phule Pune University for the TEM and NIR facility GBM thanks the BARC-Pune University collaborative programme for fellowship. All the authors thank UGC UPE-II program for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh K. Haram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gujarathi, Y.D., Markad, G. & Haram, S.K. Interaction of lead selenide with reduced graphene oxide: investigation through cyclic voltammetry and spectroscopy. J Mater Sci: Mater Electron 27, 12385–12391 (2016). https://doi.org/10.1007/s10854-016-5106-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5106-0

Keywords

Navigation