Skip to main content
Log in

Molten salt synthesis of (Zn, Mg) TiO3 micro/nano crystals with pure hexagonal ilmenite structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The pure hexagonal phase (Zn, Mg) TiO3 (abbreviated to ZMT) micro/nano crystals were prepared by a molten salt method. The influences of the molten salt system and the heat treatment temperature on ZMT crystalline powders phase composition and particles morphology were studied. The results show that the formation of ZMT phase takes place at about 530 °C and the hexagonal phase stability region is 530–810 °C in KCl–NaCl salt system when MgCl2·6H2O taken in excess. Compared to the conventional solid phase process, the formation temperature of hexagonal ZMT via the molten salt method is lower. The ZMT powders prepared by the molten salt method are indicative more uniform grain size distribution and small grain size (the average grain size is about 150 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Butee, A.R. Kulkarni, O. Prakash, R.P.R.C. Aiyar, I. Wattamwar, D. Bais, K. Sudheendran, R.K.C. James, Significant enhancement in quality factor of Zn2TiO4 with Cu-substitution. Mater. Sci. Eng. B 176, 567–572 (2011)

    Article  Google Scholar 

  2. X.C. Liu, F. Gao, C.S. Tian, Synthesis, low-temperature sintering and the dielectric properties of the ZnO–(1–x) TiO2xSnO2 (x = 0.04–0.2). Mater. Res. Bull. 43, 693–699 (2008)

    Article  Google Scholar 

  3. X.C. Liu, M. Zhao, F. Gao, L.L. Zhao, C.S. Tian, Effects of WO3 additions on the phase structure and transition of zinc titanate ceramics. J. Alloys Compd. 450, 440–445 (2008)

    Article  Google Scholar 

  4. Y.R. Wang, S.F. Wang, Y.M. Lin, Low temperature sintering of (Zn1−x , Mg x ) TiO3 microwave dielectrics. Ceram. Int. 31, 905–909 (2005)

    Article  Google Scholar 

  5. H.T. Kim, S. Nahm, J.D. Byun, Low-fired (Zn, Mg) TiO3 microwave dielectrics. J. Am. Cream. Soc. 82, 3476–3480 (1999)

    Article  Google Scholar 

  6. Z. Ding, H. Su, X. Tang, H. Zhang, Y. Jing, B. Liu, Low: temperature: sintering characteristic and microwave dielectric properties of (Zn0.7Mg0.3)TiO3 ceramics with LBSCA glass. Ceram. Int. 41, 10133–10136 (2015)

    Article  Google Scholar 

  7. B. Li, B. Tang, S. Zhang, H. Jiang, Low temperature sintering and microwave dielectric properties of (Zn0.65Mg0.35) TiO3 ceramics with BiVO4. J. Mater. Sci. 45, 6461–6466 (2010)

    Article  Google Scholar 

  8. N. Obradovic, M. Mitric, M.V. Nikolic, D. Minic, N. Mitrovic, M.M. Ristic, Influence of MgO addition on the synthesis and electrical properties of sintered zinc–titanate ceramics. J. Alloys Compd. 471, 272–277 (2009)

    Article  Google Scholar 

  9. Y.C. Lee, Y.Y. Yeh, P.R. Tsai, Effect of microwave sintering on the microstructure and electric properties of (Zn, Mg) TiO3-based multilayer ceramic capacitors. J. Eur. Ceram. Soc. 32, 1725–1732 (2012)

    Article  Google Scholar 

  10. K. He, R.Y. Hong, W.G. Feng, D. Badami, A facile co-precipitation synthesis of hexagonal (Zn, Mg) TiO3. Powder Technol. 239, 518–524 (2013)

    Article  Google Scholar 

  11. X.C. Liu, Molten salt synthesis of ZnTiO3 powders with around 100 nm grain size crystalline morphology. Mater. Lett. 80, 69–71 (2012)

    Article  Google Scholar 

  12. L. Liu, F. Gao, J. Li, J. Liu, G. Hu, H. Sun, Molten salt synthesis of acicular sodium strontium niobate particles. Mater. Sci. Eng. B 178, 1359–1364 (2013)

    Article  Google Scholar 

  13. L. Liu, F. Gao, Y. Zhang, F. Gao, Preparation of cubic Na0.5Sr0.25NbO3 particles by molten salt synthesis. J. Mater. Sci.: Mater. Electron. 26, 1136–1141 (2015)

    Google Scholar 

  14. X. Tian, F. Gao, S. Qu, H. Ma, B. Wang, Effects of molten salt content and reaction temperature on molten salt preparation of CaNaBi2Nb3O12 powder. J. Mater. Sci.: Mater. Electron. 26, 6189–6193 (2015)

    Google Scholar 

  15. D. Zhou, H. Wang, H. Zhou, X. Xie, X. Yao, Y. Cheng, Preparation of Sb3Nb3O13 powders using molten salt method. J. Mater. Sci. 42, 8387–8390 (2007)

    Article  Google Scholar 

  16. T. Lusiola, F. Bortolani, Q. Zhang, R. Dorey, Molten hydroxide synthesis as an alternative to molten salt synthesis for producing K0.5Na0.5NbO3 lead free ceramics. J. Mater. Sci. 47, 1938–1942 (2012)

    Article  Google Scholar 

  17. C.L. Huang, Y.W. Tseng, J.Y. Chen, Y.C. Kuo, Dielectric properties of high-Q (Mg1–x Zn x )1.8Ti1.1O4 ceramics at microwave frequency. J. Eur. Ceram. Soc. 32, 2365–2371 (2012)

    Article  Google Scholar 

  18. M.K. Ekmekçi, M. Erdem, A.S. Başak, M. İlhan, A. Mergen, Molten saltsynthesis and optical properties of Eu3+, Dy3+ or Nd3+ doped NiNb2O6 columbite-type phosphors. Ceram. Int. 41, 9680–9685 (2015)

    Article  Google Scholar 

  19. J. Wu, S. Hao, J. Lin, M. Huang, Y. Huang, Z. Lan, P. Li, Crystal morphology of anatase titania nanocrystals used in dye-sensitized solar cells. Cryst. Growth Des. 8, 247–252 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (Project 51372197) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (Project 14JK1483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangchun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zuo, C. Molten salt synthesis of (Zn, Mg) TiO3 micro/nano crystals with pure hexagonal ilmenite structure. J Mater Sci: Mater Electron 27, 8319–8324 (2016). https://doi.org/10.1007/s10854-016-4840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4840-7

Keywords

Navigation