Skip to main content
Log in

Preparation and characterization of (Zr0.8,Sn0.2)TiO4 nano crystals by hydrothermal-molten salt method

  • Review Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The pure phase (Zr0.8,Sn0.2)TiO4 nano crystals have been prepared by hydrothermal-molten salt method. The effects of the pH of solvent system, the calcinations temperature and the ratio of composite molten salt on the phase composition and crystalline morphology have been investigated. The results show that the high pure phase (Zr0.8,Sn0.2)TiO4 nano crystals with regular morphology were prepared at 1000 oC in NaCl-KCl salt system. The synthesized temperature of single phase (Zr0.8,Sn0.2)TiO4 is lower and the crystal growth is more complete compared with the hydrothermal-solid state method. The rod-like crystalline grain are evenly distributed with a diameter of about 50–60 nm and can be used as start materials for preparing ZST textured ceramics. The (Zr0.8,Sn0.2)TiO4 nano crystal has a certain photocatalytic effect and good UV shielding performance.

Highlights

  • (Zr0.8,Sn0.2)TiO4 nano powders were prepared by hydrothermal-molten salt method.

  • Synthetic nano powder can be used as the starting material for preparing ZST textured ceramics.

  • The synthesized powder has a certain degree of photocatalysis and good UV shielding performance.

  • The synthesized powder is rod-like crystal grains, uniformly distributed, with a diameter of about 50–60 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang RY, Weng MH, Kuan H (2009) TEM observation of liquid phase sintering in V2O5 modified (Zr0.8,Sn0.2)TiO4 microwave ceramics. Ceram Int 35:39–43

    Article  Google Scholar 

  2. Lyu XS, Li LX, Sun H, Zhang S, Li S (2016) High-Q microwave dielectrics in wolframite magnesium zirconium tantalate ceramics. Ceram Int 42:2036–2040

    Article  CAS  Google Scholar 

  3. Zhang Y, Ding SH, Li C, Song TX, Zhang YC (2020) Bond analysis of novel MnZrTa2O8 microwave dielectric ceramics with monoclinic structure. J Mater Sci 55:8491–8501

    Article  CAS  Google Scholar 

  4. Bafrooei HB, Feizpour M, Sayyadi-shahraki A, Song KX (2020) High-performance ZnTiNb2O8 microwave dielectric ceramics produced from ZnNb2O6-TiO2 nano powders. J Alloy Compd 834:155082

    Article  CAS  Google Scholar 

  5. Guo J, Zhou D, Wang H, Yao X (2011) Microwave dielectric properties of (1-x)ZnMoO4-xTiO2 composite ceramics. J Alloy Compd 509:5863–5865

    Article  CAS  Google Scholar 

  6. Zhou HF, Tan X, Huang J, Wang N, Fan GC, Chen XL (2017) Phase structure, sintering behavior and adjustable microwave dielectric properties of Mg1-xLi2xTixO1-2x solid solution ceramics. J Alloy Compd 696:1255–1259

    Article  CAS  Google Scholar 

  7. Xiang HC, Fang L, Fang WS, Tang Y, Li CC (2017) A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure. J Eur Ceram Soc 37:625–629

    Article  CAS  Google Scholar 

  8. Zhang Y, Ding SH, Song TS, Zhang YC (2019) Microwave dielectric properties of temperature stable MO-ZrO2-Ta2O5 ceramics. J Alloys Compd https://doi.org/10.1016/j.jallcom.2019.05.251

  9. Yang RY, Weng MH, Su YK, Ye CS, Wu HW (2009) Effect of annealing temperatures on microstructure of (Zr0.8Sn0.2)TiO4 thin films grown by a sol–gel process. J Alloy Compd 471:511–514

    Article  CAS  Google Scholar 

  10. Wang X, Zou ZY, Song XQ, Lei W, Zhong LW (2018) The effects of dispersants on sinterability and microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics. Ceram Int 44:14990–4994

    Article  CAS  Google Scholar 

  11. Wang LZ, Wang LX, Wang ZF, Huang BY, Fu ZX (2016) Effect of ZnO/Er2O3 addition on microwave properties of (Zr0.8Sn0.2)TiO4 ceramics. J Mater Sci Mater Electron 27:3929–3933

    Article  CAS  Google Scholar 

  12. Kim DJ, Hahn JW, Han GP, Lee SS, Choy TG (2000) Effects of Alkaline-Earth-Metal addition on the snterability and microwave characteristics of (Zr,Sn)TiO4 dielectrics. J Am Ceram Soc 83:1010–1012

    Article  CAS  Google Scholar 

  13. Jiang HT, Zhai JW, Zhang MW, Yao X (2012) Enhanced microwave dielectric properties of Ba0.40Sr0.60TiO3–Zr0.80Sn0.20TiO4 composite ceramics. J Mater Sci 47:2617–2623

    Article  CAS  Google Scholar 

  14. Vahabzadeh S, Golozar MA, Ashrafizadeh F (2011) Effect of annealing on microstructure of CuO-doped (Zr0.8Sn0.2)TiO4. J Alloy Compd 509:1129–1132

    Article  CAS  Google Scholar 

  15. Sun QL, Zhou HQ, Luo XF, Hu LS, Ren LC (2016) Influence of La2O3/SrO doping of (Zr0.8Sn0.2)TiO4 ceramics on their sintering behavior and microwave dielectric properties. Ceram Int 42:12306–12311

    Article  CAS  Google Scholar 

  16. Bhuyan RK, Kumar TS, Goswami D, James AR, Pamu D (2013) Liquid phase effect of La2O3 and V2O5 on microwave dielectric properties of Mg2TiO4 ceramics. J Electroceram 31:48–54

    Article  CAS  Google Scholar 

  17. Wang LZ, Wang LX, Wang ZF, Huang BY, Zhang QT, Fu ZX (2015) Effect of sintering aid ZnO-CeO2 on dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics. J Mater Sci Mater Electron 26:9026–9030

    Article  CAS  Google Scholar 

  18. Pamu D, Rao GLN, Raju KCJ (2011) Low temperature processing of (Zr0.8Sn0.2)TiO4 ceramics with improved Q factor. J Alloy Compd 509:9289–9295

    Article  CAS  Google Scholar 

  19. Sun QL, Zhou HQ, Zhu HK, Qi HQ, Hu LS, Yue ZX (2016) Sintering behavior and microwave dielectric properties of Y2O3-ZnO doped (Zr0.8,Sn0.2)TiO4 ceramics. J Mater Sci Mater Electron 27:7750–7754

    Article  CAS  Google Scholar 

  20. Olhero SM, Kaushal A, Ferreira JMF (2014) Fostering the properties of (Zr0.8Sn0.2)TiO4 (ZST) ceramics via freeze granulation without sintering additives. Rsc Adv 4:48734–48740

    Article  CAS  Google Scholar 

  21. Arantes VL (2012) Sintering and microwave properties of zirconium tin titanate doped with select oxides. J Mater Eng Perform 21:1777–1784

    Article  CAS  Google Scholar 

  22. Heiao YC, Wu L, Wei CC (1988) Microwave dielectric properties of (ZrSn)TiO4 ceramic. Mat Res Bull 29:1687–1692

    Article  Google Scholar 

  23. Yu HG, Shen ZH, Bao DY, Xiong ZX (2004) Preparation of ZST microwave ceramic powder by hydrothermal method. J Funct Mater 35:3152–3154

    Google Scholar 

  24. Wu JQ, Guo HF, Cao Y (2017) Preparation of SnO2-ZnO/ZST ceramics by precipitation method and its Q value. J Ceram 38:217–220

    Google Scholar 

  25. Ho YS, Chen TS, Yang WD (2010) The effect of tin precursors on the formation of (Zr0.8Sn0.2)TiO4 nano-powder by sol gel process. J Sol-Gel Sci Technol 53:613–618

    Article  CAS  Google Scholar 

  26. Ge HY, Hou YD, Yang JF, Zhu MK, Wang H, Yan H (2013) Fabrication and properties of Na0.9K0.1NbO3 nanostructures by molten salt synthesis. Powder Technol 246:144–147

    Article  CAS  Google Scholar 

  27. Li C, Chiu C, Desu SB (1991) Formation of lead niobates in molten salt systems. J Am Ceram Soc 74:302–307

    Google Scholar 

  28. Yan W, Liu XC, Hou S, Wang X (2019) Study on Micro-nanocrystalline Structure Control and Performance of ZnWO4 photocatalysts. Catal Sci Technol 9:1141–1153

    Article  CAS  Google Scholar 

  29. Wang Y, Zuo SX, Li XZ, Liu WJ, Xu R, Zhong J, Yao C (2020) Ultrafine TiO2 Rheological properties and UV protection properties in silicone oil. China Surfactant Deterg Cosmetics 50:112–117

    Google Scholar 

  30. Kurz W, Yetisen AK, Kaito MV, Fuchter MJ, Jakobi M, Elsner M, Koch AW (2020) UV-sensitive wearable devices for colormetric monitoring of UV exposure. Adv Opt Mater 8:1901969

    Article  CAS  Google Scholar 

  31. Kockler J, Oelgemöller M, Robertson S, Glass BD (2012) Photostability of sunscreens. J Photoch Photobio C 13:91–110

    Article  CAS  Google Scholar 

  32. Reinosa JJ, Leret P, Alvarez-Docio CM, Campo A, Fernandez JF (2016) Enhancement of UV absorption behavior in ZnO–TiO2 composites. J Bol Soc Esp Ceram V 55:55–62

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Natural Science Foundation of China (51602252) and National Key Basic Research and Development Project Subproject (2017YFC0703204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangchun Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Liu, X., Li, Z. et al. Preparation and characterization of (Zr0.8,Sn0.2)TiO4 nano crystals by hydrothermal-molten salt method. J Sol-Gel Sci Technol 99, 275–283 (2021). https://doi.org/10.1007/s10971-021-05581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05581-3

Keywords

Navigation