Skip to main content
Log in

Manufacture and dielectric properties of X9R Bi-based lead-free multilayer ceramic capacitors with AgPd inner electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, 0.6(Na0.5Bi0.5)TiO3–0.4NaNbO3(0.6NBT–0.4NN) was synthesized by solid state reaction method. The homogenous green ceramic sheets with high density were produced by tape casting according to suitable casting parameters. Embryos of multilayered ceramic capacitors (MLCC) had been fabricated by punching, screen printing, stacking, laminating and cutting processes. And then after burning out and sintering at different conditions, the cross-sectional microstructures of components were compared. Differential scanning calorimetric analysis and the thermo-gravimetric analysis of green devices were carried out to analyze the effects of different sintering procedures on MLCCs. The dielectric properties and polarization loops of the MLCCs were investigated with dielectric constant (800–895), dielectric loss (0.004–0.007) and capacitance variation ΔC/C < 11 % in the temperature range of −55 to 205 °C, which satisfied X9R in the Electronic Industries Association standard. The breakdown strength of the capacitor was 260 kV/cm. The resistance of the capacitor was measured to be 1.873 × 1011 Ω. These properties of the 0.6NBT–0.4NN ceramic capacitor indicated the potential dielectric materials for the application of MLCCs at the high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.F. Wang, J.H. Li, Y.F. Hsu, J. Eur. Ceram. Soc. 33, 1793 (2013)

    Article  Google Scholar 

  2. R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher, Electr. Packag. Manuf. IEEE Trans. on 27, 164 (2004)

    Article  Google Scholar 

  3. L.X. Li, M.J. Wang, Y.R. Liu, J.X. Chen, N. Zhang, Ceram Int. 40, 1105 (2014)

    Article  Google Scholar 

  4. Y.M. Li, W. Chen, J. Zhou, Q. Xu, H.J. Sun, R.X. Xu, Mater. Sci. Eng. B 112, 5 (2004)

    Article  Google Scholar 

  5. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)

    Article  Google Scholar 

  6. Y.M. Chiang, G.W. Farrey, A.N. Soukhojak, Appl. Phys. Lett. 73, 3683 (1998)

    Article  Google Scholar 

  7. Y. Hosono, K. Harada, Y. Yamashita, Jpn. J. Appl. Phys. 40, 5722 (2001)

    Article  Google Scholar 

  8. O. Elkechai, P. Marchet, P. Thomas, M. Manier, J.P. Mercurio, J. Mater. Chem. 7, 91 (1997)

    Article  Google Scholar 

  9. K.S. Hong, S.E. Park, J. Appl. Phys. 79, 388 (1996)

    Article  Google Scholar 

  10. K. Sakata, Y. Masuda, Ferroelectrics 7, 347 (1974)

    Article  Google Scholar 

  11. S.E. Park, K.S. Hong, J. Mater. Res. 12, 2152 (1997)

    Article  Google Scholar 

  12. H. Ishii, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 40, 5660 (2001)

    Article  Google Scholar 

  13. T. Wada, K. Toyoike, Y. Imanaka, Y. Matsuo, Jpn. J. Appl. Phys. 40, 5703 (2001)

    Article  Google Scholar 

  14. Q. Xu, Z. Song, W. Tang, H. Hao, L. Zhang, M. Appiah, M.H. Cao, Z.H. Yao, Z.C. He, H.X. Liu, J. Am. Ceram. Soc. 98, 3119 (2015)

    Article  Google Scholar 

  15. Y.K. Kim, Y.G. Jung, T.H. Sung, D.H. Kim, U. Paik, J. Mater. Process. Technol. 152, 276 (2004)

    Article  Google Scholar 

  16. J.G. Pepin, W. Borland, P. O’Callaghan, J.S. Richard, Young J. Am. Ceram. Soc. 72, 2287 (1989)

    Article  Google Scholar 

  17. J.G. Pepin, Adv. Ceram. Mater. 3, 517 (1988)

    Article  Google Scholar 

  18. R.E. Mistler, E.R. Twiname, Tape Casting: Theory and Practice (American Ceramic Society, Westerville, 2000), pp. 128–159

    Google Scholar 

  19. C.C. Wu, Y.H. Lin, P.S. Cheng, C.C. Chan, C.F. Yang, Adv. Mater. Res. 415, 1064 (2012)

    Google Scholar 

  20. C. Zhou, X. Liu, J. Mater. Sci. Mater. Electron. 19, 29 (2008)

    Article  Google Scholar 

  21. Q. Xu, T.M. Li, H. Hao, S.J. Zhang, Z.J. Wang, M.H. Cao, Z.H. Yao, H.X. Liu, J. Eur. Ceram. Soc. 35, 545 (2015)

    Article  Google Scholar 

  22. L.J. Liu, Z. Yang, M.X. Wu, L. Fang, C.Z. Hu, J. Alloys Compd. 507, 196 (2010)

    Article  Google Scholar 

  23. Y.M. Huang, D.P. Shi, L.J. Liu, G.Z. Li, S.Y. Zheng, L. Fang, Appl. Phys. A 114, 891 (2014)

    Article  Google Scholar 

  24. L.J. Liu, Y.M. Huang, C.X. Su, L. Fang, M.X. Wu, C.Z. Hu, H.Q. Fan, Appl. Phys. A Mater. Sci. Process. 104, 1047 (2011)

    Article  Google Scholar 

  25. A. Heunisch, A. Dellert, A. Roosen, J. Eur. Ceram. Soc. 30, 3397 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (No. 51372191), the National Key Basic Research Program of China (973 Program) (No. 2015CB654601) and International Science and Technology Cooperation Program of China (2011DFA52680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanxing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C., Hao, H., Xu, Q. et al. Manufacture and dielectric properties of X9R Bi-based lead-free multilayer ceramic capacitors with AgPd inner electrodes. J Mater Sci: Mater Electron 27, 6140–6149 (2016). https://doi.org/10.1007/s10854-016-4541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4541-2

Keywords

Navigation