Skip to main content
Log in

Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MnO2 nanomaterials are synthesized via calcinations in air at various temperatures. Amorphous MnO2 masses appear between 100 and 300 °C and nanorods form above 400 °C. Transmission and scanning electron microscopy are used to observe the geometries of each material, with further structural analyses conducted using X-ray photoelectron spectroscopy, X-ray diffraction, and BET method. The electrochemical properties are investigated through galvanostatic charge/discharge cycling, electrochemical impedance spectra, and cyclic voltammetry within a three-electrode test cell filled with 1 mol L−1 Na2SO4 solution. The slightly asymmetric galvanostatic cycling curves suggest that the reversibility of the Faradaic reactions are imperfect, requiring a larger time to charge than discharge. The specific capacitances of each sample are calculated and trends are identified, proving that the samples synthesized at higher temperatures exhibit poorer electrochemical behaviors. The highest calculated specific capacitance is 175 F g−1 by the sample calcinated at 400 °C. However, the lower temperature samples exhibit more favorable geometric properties and higher overall average specific capacitances. For future research, it is suggested that surface modifications such as a carbon coating could be used in conjunction with the MnO2 nanorods to reach the electrochemical properties required by contemporary industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Yang, J. Zhang, M. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111(5), 3577–3613 (2011)

    Article  Google Scholar 

  2. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Adv. Mater. 22, E28–E62 (2010)

    Article  Google Scholar 

  3. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technical Applications (Kluwer Academic/Plenum Publishers, New York, 1999)

    Book  Google Scholar 

  4. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313, 1760–1763 (2006)

    Article  Google Scholar 

  5. M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Science 341, 1502–1505 (2013)

    Article  Google Scholar 

  6. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Nat. Nanotechnol. 5, 651–654 (2010)

    Article  Google Scholar 

  7. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)

    Article  Google Scholar 

  8. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210–1211 (2014)

    Article  Google Scholar 

  9. P.J. Hall, E.J. Bain, Energy Policy 36(12), 4352–4355 (2008)

    Article  Google Scholar 

  10. Q. Wang, Z. Wen, J. Li, Adv. Funct. Mater. 16(16), 2141–2146 (2006)

    Article  Google Scholar 

  11. X. Xia, J. Tu, Y. Mai, X. Wang, C. Gu, X. Zhao, J. Mater. Chem. 21(25), 9319–9325 (2011)

    Article  Google Scholar 

  12. Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, Adv. Mater. 23(6), 791–795 (2011)

    Article  Google Scholar 

  13. E. Jokar, A. Irajizad, S. Shahrokhian, J. Solid State Electrochem. 19, 269–274 (2015)

    Article  Google Scholar 

  14. R. Alcantara, M. Jaraba, P. Lavela, J.L. Tirado, Chem. Mater. 14, 2847–2848 (2002)

    Article  Google Scholar 

  15. Y.-S. Hu, Y.-G. Guo, W. Sigle, S. Hore, P. Balaya, J. Maier, Nat. Mater. 5, 713–717 (2006)

    Article  Google Scholar 

  16. S.W. Lee, J. Kim, S. Chen, P.T. Hammond, Y. Shao-Horn, Am. Chem. Soc. 4(7), 3889–3896 (2010)

    Google Scholar 

  17. Y. Zhao, Y. Meng, P. Jiang, J. Power Sources 259, 219–226 (2014)

    Article  Google Scholar 

  18. A. H. Reidies, in Ullmann’s Encyclopedia of Industrial Chemistry (2000). doi:10.1002/14356007.a16_123

  19. W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697–1721 (2011)

    Article  Google Scholar 

  20. H.Y. Lee, J.B. Goodenough, J. Solid State Chem. 144, 220–223 (1999)

    Article  Google Scholar 

  21. S.R. Sivakkumar, J.M. Ko, D.Y. Kim, B.C. Kim, G.G. Wallace, Electrochim. Acta 52(25), 7377–7385 (2007)

    Article  Google Scholar 

  22. M. Toupin, T. Brousse, D. Belanger, Chem. Mater. 16, 3184–3190 (2004)

    Article  Google Scholar 

  23. J. Desilvestro, O. Haas, J. Electrochem. Soc. 137(1), 5C–22C (1990)

    Article  Google Scholar 

  24. D.L. Fang, B.C. Wu, Y. Yan, A.Q. Mao, C.H. Zheng, J. Solid State Electrochem. 16, 135–142 (2012)

    Article  Google Scholar 

  25. J. Yan, Z. Fan, T. Wei, J. Cheng, B. Shao, K. Wang, L. Song, M. Zhang, J. Power Sources 194, 1202–1207 (2009)

    Article  Google Scholar 

  26. J. Cao, Y. Zhu, L. Shi, L. Zhu, K. Bao, S. Liu, Y. Qian, Eur. J. Inorg. Chem. 2010, 1172–1176 (2010). doi:10.1002/ejic.200901116

    Article  Google Scholar 

  27. Y. Zhao, P. Jiang, S.-S. Xie, J. Power Sources 239, 393–398 (2013)

    Article  Google Scholar 

  28. Y. Hou, Y. Cheng, T. Hobson, J. Liu, Nano Lett. 10, 2727–2733 (2010)

    Article  Google Scholar 

  29. S. Devaraj, N. Munichandraiah, Electrochem. Solid-State Lett. 8(7), A373–A377 (2005)

    Article  Google Scholar 

  30. V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B. Wei, J. Phys. Chem. B 109, 20207–20214 (2005)

    Article  Google Scholar 

  31. M. Kim, Y. Hwang, J. Kim, Phys. Chem. Chem. Phys. 16(1), 351–361 (2014)

    Article  Google Scholar 

  32. Y. Qiu, P. Xu, B. Guo, Z. Cheng, H. Fan, M. Yang, X. Yang, J. Li, RSC Adv. 4(109), 64187–64192 (2014)

    Article  Google Scholar 

  33. H.L. Fan, F. Ran, X.X. Zhang, H.M. Song, X.Q. Niu, L.B. Kong, L. Kang, Nano Micro Lett. 7(1), 59–67 (2015)

    Article  Google Scholar 

  34. J.W. Wang, Y. Chen, B.Z. Chen, J. Electrochem. Soc. 162(8), A1654–A1661 (2015)

    Article  Google Scholar 

  35. S. Naumov, Hysteresis Phenomena in Mesoporous Materials, Universitat Liepzig, Vol. Dissertati (2009)

  36. S. Li, L. Qi, L. Lu, H. Wang, J. Solid State Chem. 197, 29–37 (2013)

    Article  Google Scholar 

  37. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in Handbook of X-Ray Photoelectron Spectroscopy, ed. by J. Chastain, R.C. King Jr (Physical Electronics Inc., Eden Prairie, 1995)

    Google Scholar 

  38. A.D. Kulkarni, S.A. Patil, P.S. Badami, Int. J. Electrochem. Sci. 4, 717–729 (2009)

    Google Scholar 

  39. M.P. Donzello, D. Dini, G. D’Arcangelo, C. Ercolani, R. Zhan, Z. Ou, P.A. Stuzhin, K.M. Kadish, J. Am. Chem. Soc. 125(46), 14190–14204 (2003)

    Article  Google Scholar 

  40. Y. Li, H.Q. Xie, J.F. Wang, L.F. Chen, Mater. Lett. 65(2), 403–405 (2013)

    Article  Google Scholar 

  41. P. Yu, X. Zhang, D.L. Wang, L. Wang, Y.W. Ma, Cryst. Growth Des. 9(1), 528–533 (2008)

    Article  Google Scholar 

  42. J.P. Ni, W.C. Lu, L.M. Zhang, B.H. Yue, X.F. Shang, Y. Lv, J. Phys. Chem. C 113(1), 54–60 (2009)

    Article  Google Scholar 

  43. Y.S. Luo, J. Jiang, W.W. Zhou, H.P. Yang, J.S. Luo, X.Y. Qi, H. Zhang, D.Y.W.Y. Yu, C.M. Li, T. Yu, J. Mater. Chem. 22, 8634–8640 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible with the cooperation of Clarkson University and Tsinghua University, and the financial support of Corning, Incorporated. The authors would also like to acknowledge the grants from the National Natural Science Foundation of China (NSFC–Nos. 51172119, 51572145 and 51221291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-An Wang.

Additional information

Yucheng Zhao and Jacob Misch have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Misch, J. & Wang, CA. Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials. J Mater Sci: Mater Electron 27, 5533–5542 (2016). https://doi.org/10.1007/s10854-016-4457-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4457-x

Keywords

Navigation