Skip to main content
Log in

Structural, morphological, optical and photocatalytic properties of Ag-doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, pure ZnO and Ag-doped ZnO nanoparticles (NPs) have been synthesized by the simple sol–gel route. The studies on as-synthesized ZnO and Ag-doped ZnO NPs have been conducted using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), UV–visible spectroscopy and photocatalytic measurement. The powder XRD pattern indicates that the Ag-doped ZnO samples possess crystalline behavior and exhibits hexagonal wurtzite structure with average crystalline size in the range of 6.58–20.37 nm. TEM measurement confirms the particle size and hexagonal phase of Ag-doped ZnO NPs. The optical properties of the as-prepared nanoparticles were examined using UV–visible and the optical band gap of Ag-doped ZnO NPs is found to be between 2.96 and 3.07 eV that have decreased from bandgap of 3.13 eV of pure ZnO NPs. The near band emissions at around 389, 396, 404 and 410 nm are observed for pure and Ag-doped ZnO NPs in addition to deep level emission at higher wavelength in the visible region. The photocatalytic studies of NPs showed to enhanced degradation of methylene blue with Ag-doped ZnO NPs comparable to ZnO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.D. Ahn, H.S. Kang, J.H. Kim, G.H. Kim, H.W. Chang, S.Y. Lee, J. Appl. Phys. 100, 093701 (2006)

    Article  Google Scholar 

  2. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Int. Nano Lett. 3, 30 (2013)

    Article  Google Scholar 

  3. B. Kumar, K. Smita, L. Cumbal, A. Debut, Bioinorg. Chem. Appl. (2014). doi:10.1155/2014/523869

    Google Scholar 

  4. M.C. Jun, S.U. Park, J.H. Koh, Nanoscale Res. Lett. 7, 639 (2012)

    Article  Google Scholar 

  5. S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Phys. B 407(8), 1223–1226 (2012)

    Article  Google Scholar 

  6. D. Bresser, F. Mueller, M. Fiedler, S. Krueger, R. Kloepsch, D. Baither, M. Winter, E. Paillard, S. Passerini, Chem. Mater. 25, 4977–4985 (2013)

    Article  Google Scholar 

  7. A.H. Shah, M.B. Ahamed, E. Manikandan, J. Mater. Sci. Mater. Electron. 24, 2302–2308 (2013)

    Article  Google Scholar 

  8. J.Y. Oh, S.C. Lim, S.D. Ahn, S.S. Lee, K.I. Cho, J.B. Koo, R. Choi, M. Hasan, J. Phys. D Appl. Phys. 46, 285101–285105 (2013)

    Article  Google Scholar 

  9. S.S. Sartiman, N.F. Djaja, R. Saleh, Mater. Sci. Appl. 4, 528–537 (2013)

    Google Scholar 

  10. T.L. Tan, C.W. Lai, S.B.A. Hamid, J. Nanomater. (2014). doi:10.1155/2014/371720

    Google Scholar 

  11. V. Gandhi, R. Ganesan, H.H.A. Syedahamed, M. Thaiyan, J. Phys. Chem. C 118, 9715–9725 (2014)

    Article  Google Scholar 

  12. S.K. Gandomania, R. Yousefi, F.J. Sheini, N.M. Huang, Ceram. Int. 40(6), 7957–7963 (2014)

    Article  Google Scholar 

  13. A. Mesaros, D. Toloman, M. Nasui, R.B. Mos, T. Petriso, J. Mater. Sci. 50, 6075–6086 (2015)

    Article  Google Scholar 

  14. K. Kim, D.H. Lee, S.Y. Lee, G.E. Jang, J.S. Kim, Nanoscale Res. Lett. 7, 273 (2012)

    Article  Google Scholar 

  15. R. Chen, C. Zou, J. Bian, A. Sandhu, W. Gao, Nanotechnology 22, 105706–105714 (2011)

    Article  Google Scholar 

  16. Y. Li, X. Zhao, W. Fan, J. Phys. Chem. C 115, 3552–3557 (2011)

    Article  Google Scholar 

  17. Y. Wu, S. Liu, Y. Zuo, J. Li, J. Wang, Catal. Lett. 119, 245–251 (2007)

    Article  Google Scholar 

  18. S. Saravanan, M. Silambarasan, T. Soga, Jpn. J. Appl. Phys. 53, 11RF01 (2014)

    Article  Google Scholar 

  19. E.A. Davis, N.F. Mott, Philos. Mag. 22, 903 (1970)

    Article  Google Scholar 

  20. A.K. Zak, R. Razali, W.H.A. Majid, M. Darroudi, Int. J. Nanomed. 6, 1399–1403 (2011)

    Google Scholar 

  21. M.A. Thomas, J.B. Cui, J. Phys. Chem. Lett. 1, 1090 (2010)

    Article  Google Scholar 

  22. L. Hongjun, Z. Zang, X. Tang, Opt. Mater. Express 4(9), 1762–1769 (2014)

    Article  Google Scholar 

  23. Z. Zang, X. Tang, J. Alloys Compd. 619, 98–101 (2015)

    Article  Google Scholar 

  24. Z. Zang, M. Wen, W. Chen, Y. Zeng, Z. Zu, X. Zeng, X. Tang, Mater. Des. 84, 418–421 (2015)

    Google Scholar 

  25. C. Ton-That, M. Foley, M.R. Phillips, Nanotechnology 19, 415606 (2008)

    Article  Google Scholar 

  26. Y. Jin, Q. Cui, K. Wang, J. Hao, Q. Wang, J. Zhang, J. Appl. Phys. 109(5), 053521 (2011)

    Article  Google Scholar 

  27. S. Kuriakose, V. Choudhary, B. Satpati, S. Mohapatra, Beilstein J. Nanotechnol. 5, 639–650 (2014)

    Article  Google Scholar 

  28. A.A. Aal, S.A. Mahmud, A.K. Aboul-Gheit, Mater. Sci. Eng. C 29, 831 (2009)

    Article  Google Scholar 

  29. A.T. Kuvarega, R.W.M. Krause, B.B. Mamba, J. Phys. Chem. C 115(45), 22110–22120 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors intend to thank Science and Engineering Research Board, Department of Science & Technology (DST), Govt. of India (Grant No. SB/EMEQ/190/2013) for providing financial assistance for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, V. & Tanwar, A. Structural, morphological, optical and photocatalytic properties of Ag-doped ZnO nanoparticles. J Mater Sci: Mater Electron 27, 2166–2173 (2016). https://doi.org/10.1007/s10854-015-4227-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4227-1

Keywords

Navigation