Skip to main content
Log in

Effect of annealing under various atmospheres on the properties of electrodeposited CIGS thin films on ITO coated glass substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work aims to evaluate the effects of two different annealing atmospheres such as vacuum and N2 + Se vapor on the structural, morphological, optical and electrical properties of electrodeposited Cu (In1−xGax) Se2 CIGS thin films. All films are electrodeposited from an aqueous-based solution at room temperature in a three-electrode cell configuration, with platinum plate as the counter electrode and a glass/ITO substrate as the working electrode, and the reference electrode was saturated calomel. X-ray diffraction measurements indicate the films are crystallized in a single phase with the chalcopyrite structure and a preferred orientation along the (112) plane without unwanted secondary CIGS phases. The annealing atmospheres affected the crystallinity, morphology and grain size of the prepared films. Optical analysis by means of transmission T (λ) and reflection R (λ) measurements allow us to determine the direct band gap energy value which decreases with increasing the annealing temperature and it is in the range 1.12–1.32 eV. Electrical measurements show that CIGS compound exhibits p-type conductivity and resistivity was improved when CIGS films annealed in nitrogen + Se vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. Friedlmeier, M. Powalla, Phys. Status Solidi RRL 9(1), 28–31 (2015)

    Article  Google Scholar 

  2. K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, Prog. Photovolt. Res. Appl. 11, 225–230 (2003)

    Article  Google Scholar 

  3. S. Jeong, H. Choi, J. Hwang, J. Park, K.H. Im, Y. Jung, M. Jeon, Electron. Mater. Lett. 9, 883–885 (2013)

    Article  Google Scholar 

  4. B.J. Stanbery, Crit. Rev. Solid State Mater. Sci. 27, 73 (2002)

    Article  Google Scholar 

  5. C.A. Kaufmann, R. Caballero, T. Unold, R. Hesse, R. Klenk, S. Schorr, M. Nichterwitz, H.W. Schock, Sol. Energy Mater. Sol. Cells 93, 859–863 (2009)

    Article  Google Scholar 

  6. M. Nie, K. Elmer, Thin Solid Films 536, 172 (2013)

    Article  Google Scholar 

  7. C. Mahendran, N. Suriyanarayanan, Phys. B 408, 62 (2013)

    Article  Google Scholar 

  8. A. Kampmann, V. Sittinger, J. Rechid, R. Reineke-Koch, Thin Solid Films 361–362, 309–313 (2000)

    Article  Google Scholar 

  9. V.K. Kapur, A. Bansal, P. Le, O.I. Asensio, Thin Solid Films 431–432, 53–57 (2003)

    Article  Google Scholar 

  10. M.G. Faraj, K. Ibrahima, A. Salhin, Mater. Sci. Semicond. Process. 15, 206–213 (2012)

    Article  Google Scholar 

  11. P. Luo, C. Zhu, G. Jiang, Solid State Commun. 146, 57 (2008)

    Article  Google Scholar 

  12. C. Guillen, J. Herrero, Vacuum 67, 659 (2002)

    Article  Google Scholar 

  13. M.E. Calixto, K.D. Dobson, B.E. McCandless, R.W. Birkmire, J. Electrochem. Soc. 153, G521 (2006)

    Article  Google Scholar 

  14. O. Bamiduro, G. Chennamadhava, R. Mundle, R. Konda, B. Robinson, M. Bahoura, A.K. Pradhan, Sol. Energy 85, 545–552 (2011)

    Article  Google Scholar 

  15. R.N. Bhattacharya, W. Batchelor, K. Ramanthan, M.A. Contreras, T. Moriarty, Sol. Energy Mater. Sol. Cells 63, 367 (2000)

    Article  Google Scholar 

  16. D. Lincot, J.F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J.P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P.P. Grand, M. Benfarah, P. Mogensen, O. Kerrec, Sol. Energy 77(6), 725–737 (2004)

    Article  Google Scholar 

  17. I.M. Dharmadasa, N.B. Chaure, O. Islam, J. Wellings, T. Mad Dock, in Proceedings of the 21st European PVSEC (2006), pp. 1941–1945

  18. A.M. Fernandez, R.N. Bhattacharya, Thin Solid Films 474, 10–13 (2005)

    Article  Google Scholar 

  19. K. Bouabid, A. Ihlal, A. Manar, A. Outzourhit, E.L. Ameziane, Thin Solid Films 488, 62–67 (2005)

    Article  Google Scholar 

  20. R.N. Bhattacharya, A.M. Fernandez, Sol. Energy Mater. Sol. Cells 76, 331 (2003)

    Article  Google Scholar 

  21. S. Aksu, J. Wang, B. Basol, Electrochem. Solid State Lett. 12, 33 (2009)

    Article  Google Scholar 

  22. L. Ribeaucourt, G. Savidand, D. Lincot, E. Chassaing, Electrochim. Acta 56, 6628–6637 (2011)

    Article  Google Scholar 

  23. I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, WSXM: software for scanning probe microscopy and a tool for nanotechnology. Sci. Inst. 78, 013705 (2007)

    Article  Google Scholar 

  24. G. Hanna, J. Mattheis, V. Laptev, Y. Yamamoto, U. Rau, H.W. Schock, Thin Solid Films 431–432, 31–36 (2003)

    Article  Google Scholar 

  25. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, New Jersey, 2001), p. 170

    Google Scholar 

  26. M. Gannouni, I. Ben Assaker, R. Chtourou, Superlattices Microstruct. 61, 22–32 (2013)

    Article  Google Scholar 

  27. M.R. Baboul, H.W. Schock, S.A. Fayak, A. Abdel El-Aal, J.H. Werner, A. Ramadan, Appl. Phys. A 92, 557 (2008)

    Article  Google Scholar 

  28. C. Guillén, J. Herrero, Thin Solid Films 510, 260–264 (2006)

    Article  Google Scholar 

  29. T.M. Wang, S.K. Zheng, W.C. Hao, C. Wang, Surf. Coat. Technol. 155, 141 (2002)

    Article  Google Scholar 

  30. J. Tauc, Mater. Res. Bull. 3, 37–46 (1968)

    Article  Google Scholar 

  31. M. Chandramohan, S. Velumani, Mater. Sci. Eng. B 174, 205–208 (2010)

    Article  Google Scholar 

  32. L. Zhang, F. Liu, F. Li, Q. He, B. Li, C. Li, Sol. Energy Mater. Sol. Cells 99, 356–361 (2012)

    Article  Google Scholar 

  33. L.J. Van der Pauw, Philips Res. Rep. 13, 1–9 (1958)

    Google Scholar 

  34. L. Zhang, Q. He, W.L. Jiang, F.F. Liu, C.J. Li, Y. Sun, Sol. Energy Mater. Sol. Cells 93(1), 114–118 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

All of the authors are thankful to centre des recherches ET des Technologies de l’Énergie Techno pole Borj Cedria, for financial support towards this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihi Adel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adel, C., Fethi, B.M. & Brahim, B. Effect of annealing under various atmospheres on the properties of electrodeposited CIGS thin films on ITO coated glass substrates. J Mater Sci: Mater Electron 27, 3481–3487 (2016). https://doi.org/10.1007/s10854-015-4181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4181-y

Keywords

Navigation