Skip to main content
Log in

Effects of substrate temperature on the properties of sputtered TiN thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, high quality nanostructured thin films of titanium nitride with nanoscale grain sizes have been prepared by the reactive magnetron sputtering method examining the effects of the substrate temperature on the topography, optical and semiconductor properties of the thin films Concretely, the three dimension surface topography of samples was investigated by atomic force microscopy determining the power spectral density functions. Also, a new revised version of the Tauc’s method (named ineffective thickness method) has been proposed for the determination of the optical band gap in nanostructure semiconductor thin films. These studies indicated that the increment of the substrate temperature improves the physical properties of the films modifying the grain size and grain aggregation, and altering the optical band gap of the samples from 4.06 to 3.43 eV. In addition, a competitive growth of crystalline planes with different orientations was found as a result of the occurrence of higher grain sizes in the nanostructured titanium nitride thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.L. Zhao, T.B. Zhang, T. Zhang, J.X. Wang, G.H. Han, J. Non-Cryst. Solids 354, 1272–1275 (2008)

    Article  Google Scholar 

  2. G.V. Naik, J.L. Schroeder, X. Ni, A.V. Kildishev, T.D. Sands, A. Boltasseva, Opt. Express 2, 478–489 (2012)

    Article  Google Scholar 

  3. E. Zalnezhad, A.A.D. Sarhan, M. Hamdi, Int. J. Adv. Manuf. Technol. 64, 281–290 (2013)

    Article  Google Scholar 

  4. Y. Matsumura, T. Chujo, H. Uchida, H.H. Uchida, Surf. Coat. Technol. 60, 489–492 (1993)

    Article  Google Scholar 

  5. D. Starosvetsky, I. Gotman, Biomaterials 22, 1853 (2001)

    Article  Google Scholar 

  6. S.H. Ahn, J.G. Kim, J.G. Han, Thin Solid Films 515, 6878 (2007)

    Article  Google Scholar 

  7. S.G. Wang, X.D. Bai, B.C. Wang, Y.D. Fan, Thin Solid Films 278, 67 (1996)

    Article  Google Scholar 

  8. P. Chen, W.Y. Wu, Surf. Coat. Technol. 231, 140–143 (2013)

    Article  Google Scholar 

  9. M. Molamohammadi, A. Arman, A. Achour et al., J. Mater. Sci. Mater. Electron. 26(8), 5964–5969 (2015)

    Article  Google Scholar 

  10. M. Molamohammadi, C. Luna, A. Arman et al., J. Mater. Sci. Mater. Electron. 26(9), 6814–6818 (2015)

    Article  Google Scholar 

  11. T. Ghodselahi, A. Arman, J. Mater. Sci. Mater. Electron. 26(6), 4193–4197 (2015)

    Article  Google Scholar 

  12. Ş. Ţălu, S. Stach, V. Sueiras, N.M. Ziebarth, Ann. Biomed. Eng. 43(4), 906–916 (2015)

    Article  Google Scholar 

  13. S. Kulesza, M. Bramowicz, Appl. Surf. Sci. 293, 196–201 (2014)

    Article  Google Scholar 

  14. A. Arman, T. Ghodselahi, M. Molamohammadi et al., Prot. Met. Phys. Chem. Surf. 51(4), 575–578 (2015)

    Article  Google Scholar 

  15. D. Elenkova, J. Zaharieva, M. Getsova, I. Manolov, M. Milanova, S. Stach, Ş. Ţălu, Int. J. Polym Anal. Charact. 20(1), 42–56 (2015)

    Article  Google Scholar 

  16. J.E. Sundgren, Thin Solid Films 128, 21 (1985)

    Article  Google Scholar 

  17. V. Chawla, R. Jayaganthan, R. Chandra, Mater. Charact. 59, 1015–1020 (2008)

    Article  Google Scholar 

  18. J. Ferre-Borrull, A. Duparre, E. Quesnel, Appl. Opt. 40(13), 2190–2199 (2001)

    Article  Google Scholar 

  19. A. Arman, S. Talu, C. Luna, J. Mater. Sci. Mater. Electron. (2015). doi:10.1007/s10854-015-3628-5

    Google Scholar 

  20. J. Tauc, A. Menth, J. Non-Cryst. Solids 569, 8–10 (1972)

    Google Scholar 

  21. A. Gelali, A. Ahmadpourian, R. Bavadi, M.R. Hantehzadeh, A. Ahmadpourian, J. Fusion Energy 31(6), 586–590 (2012)

    Article  Google Scholar 

  22. Gwyddion 2.37 software (Copyright © 2004–2007, 2009–2014 Petr Klapetek, David Nečas, Christopher Anderson). Available from: http://gwyddion.net. Accessed 27 May 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Ghobadi.

Appendix

Appendix

The basic properties of the height values distribution, including its variance, skewness, kurtosis and PSD were computed according to Ref. [22]. Root-mean-square deviation (S q ), skewness of topography height distribution (S sk ), kurtosis of topography height distribution (S ku ) are parameters that depend on the height deviation, and they are useful for description of amplitude-related properties of a surface. These parameters are applied to describe dispersion, asymmetry of the height distribution and sharpness of the height distribution.

Sq, is a dispersion parameter defined as the root mean square value of the surface departures within the sampling area and is a very general and widely used parameter.

Ssk is the measurement of asymmetry of surface deviations about the mean reference plane and can effectively be used to describe the shape of the topography height distribution.

SKu, is a measure of the peakedness or sharpness of the surface height distribution and characterizes the spread of the height distribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobadi, N., Ganji, M., Luna, C. et al. Effects of substrate temperature on the properties of sputtered TiN thin films. J Mater Sci: Mater Electron 27, 2800–2808 (2016). https://doi.org/10.1007/s10854-015-4093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4093-x

Keywords

Navigation