Skip to main content
Log in

Rietveld analysis of CaCu3Ti4O12 thin films obtained by RF-sputtering

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Calcium copper titanate, CaCu3Ti4O12, CCTO, thin films with polycrystalline nature have been deposited by RF sputtering on Pt/Ti/SiO2/Si (100) substrates at a room temperature followed by annealing at 600 °C for 2 h in a conventional furnace. The crystalline structure and the surface morphology of the films were markedly affected by the growth conditions. Rietveld analysis reveal a CCTO film with 100 % pure perovskite belonging to a space group Im3 and pseudo-cubic structure. The XPS spectroscopy reveal that the in a reducing N2 atmosphere a lower Cu/Ca and Ti/Ca ratio were detected, while the O2 treatment led to an excess of Cu, due to Cu segregation of the surface forming copper oxide crystals. The film present frequency -independent dielectric properties in the temperature range evaluated, which is similar to those properties obtained in single-crystal or epitaxial thin films. The room temperature dielectric constant of the 600-nm-thick CCTO films annealed at 600 °C at 1 kHz was found to be 70. The leakage current of the MFS capacitor structure was governed by the Schottky barrier conduction mechanism and the leakage current density was lower than 10−7 A/cm2 at a 1.0 V. The current–voltage measurements on MFS capacitors established good switching characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151(2), 323–325 (2000)

    Article  Google Scholar 

  2. D. Szwagierczak, J. Kulawik, Dielectric properties of high permittivity ceramics based on Dy2/3CuTa4O12. J. Alloys Compd. 491(1–2), 465–471 (2010)

    Article  Google Scholar 

  3. C.M. Wang, L. Shih-Yuan, K.S. Kao, Y.C. Chen, S.C. Weng, Microstructural and electrical properties of CaTiO3–CaCu3Ti4O12 ceramics. J. Alloys Compd. 491(1–2), 423–430 (2010)

    Article  Google Scholar 

  4. L. Ramajo, R. Parra, J.A. Varela, M.M. Reboredo, M.A. Ramirez, M.S. Castro, Influence of vanadium on electrical and microstructural properties of CaCu3Ti4O12/CaTiO3. J. Alloys Compd. 497(1–2), 349–353 (2010)

    Article  Google Scholar 

  5. R. Parra, R. Savu, L.A. Ramajo, M.A. Ponce, J.A. Varela, M.S. Castro, P.R. Bueno, E. Joanni, Sol–gel synthesis of mesoporous CaCu3Ti4O12 thin films and their gas sensing response. J. Solid State Chem. 183, 1209–1214 (2010)

    Article  Google Scholar 

  6. A.G. Pinheiro, F.M.M. Pereira, M.R.P. Santos, Electric properties of Bi4Ti3O12(BIT)-CaCu3Ti4O12 (CCTO) composite substrates for high dielectric constant devices. J. Mater. Sci. 42(6), 2112–2120 (2007)

    Article  Google Scholar 

  7. R.S. de Figueiredo, A. Messai, A.C. Hernandes, A.S.B. Sombra, BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. J. Mater. Sci. 41, 4623–4631 (1998)

    Google Scholar 

  8. W. Lu, L. Feng, G. Cao, Z. Jiao, Preparation of CaCu3Ti4O12 thin films by chemical solution deposition. J. Mater. Sci. 39, 3523–3524 (2004)

    Article  Google Scholar 

  9. H. Wang, S. Li, J. He, C. Lin, Dielectric properties of CaCu3Ti4O12 ceramics: effect of high purity nanometric powders. J Mater Sci Mater Electron 25, 1842–1847 (2014)

    Article  Google Scholar 

  10. M.J. Pan, B.A. Bender, A bimodal grain size model for predicting the dielectric constant of calcium copper titanate ceramics. J. Am. Ceram. Soc. 88(9), 2611–2614 (2005)

    Article  Google Scholar 

  11. L. Fang, M. Shen, W. Cao, Effects of post anneal conditions on the dielectric properties of CaCu3Ti4O12 thin films prepared on Pt/Ti/SiO2/Si substrates. J. Appl. Phys. 95(11), 6483–6485 (2004)

    Article  Google Scholar 

  12. L. Wu, Y. Zhu, S. Park, S. Shapiro, G. Shirane, Defect structure of the high-dielectric-constant perovskite CaCu3Ti4O12. Phys. Rev. B 71(1), 014118–014125 (2005)

    Article  Google Scholar 

  13. V. Brizé, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais, Grain size effects on the dielectric constant of CaCu3Ti4O12 ceramics. Mater. Sci. Eng. B 129(1–3), 135–138 (2006)

    Article  Google Scholar 

  14. P. Leret, J.F. Fernandez, J. Frutos, D. Fernandez-Hevia, Nonlinear I–V electrical behaviour of doped CaCu3Ti4O12ceramics. J. Eur. Ceram. Soc. 27(13–15), 3901–3905 (2007)

    Article  Google Scholar 

  15. S.Y. Chung, I.D. Kim, S.J.L. Kang, Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3, 774–778 (2004)

    Article  Google Scholar 

  16. L. Chen, C.L. Chen, Y. Lin, Y.B. Chen, X.H. Chen, R.P. Bontchev, C.Y. Park, A. Jacobson, High temperature electrical properties of highly epitaxial CaCu3Ti4O12 thin films on (001) LaAlO3 Appl. Phys. Lett. 82(14), 2317–2319 (2003)

    Google Scholar 

  17. A. Rothschild, H.L. Tuller, Gas sensors: new materials and processing approaches. J. Electroceram. 17(2–4), 1005–1012 (2006)

    Article  Google Scholar 

  18. I.D. Kim, A. Rothschild, T. Hyodo, H.L. Tuller, Microsphere templating as means of enhancing surface activity and gas sensitivity of CaCu3Ti4O12 thin films. Nano Lett. 6(2), 193–198 (2006)

    Article  Google Scholar 

  19. R. Savu, J.A. Varela, M.S. Castro, P.R. Bueno, Joanni E (2008) p-type semiconducting gas sensing behavior of nanoporous rf sputtered CaCu3Ti4O12 thin films. Appl. Phys. Lett. 92, 132110–132112 (2008)

    Article  Google Scholar 

  20. R.A. Young, A. Sakthivel, T.S. Moss, C.O. Paiva-Santos, DBWS-9411-an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers. J. Appl. Cryst. 28, 366–367 (1995)

    Article  Google Scholar 

  21. Z. Li, H. Fan, Structure and electric properties of sol–gel derived CaCu3Ti4O12 ceramics as a pyroelectric sensor. Solid State Ion. 192(1), 682–687 (2011)

    Article  Google Scholar 

  22. G. Zang, J. Zhang, P. Zheng, J. Wang, C. Wang, Grain boundary effect on the dielectric properties of CaCu3Ti4O12 ceramics. J. Phys. D Appl. Phys. 38, 1824–1827 (2005)

    Article  Google Scholar 

  23. T. Li, R. Xue, J. Hao, Y. Xue, Z. Chen, The effect of calcining temperatures on the phase purity and electric properties of CaCu3Ti4O12 ceramics. J. Alloys Compd. 509, 1025–1028 (2011)

    Article  Google Scholar 

  24. P. Lunkenheimer, R. Fichtl, S.G. Ebbiinghaus, A. Loidl, Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys. Rev. B 70, 172102–172106 (2004)

    Article  Google Scholar 

  25. S. Krohns, P. Lunkenheimer, R. Fichtl, S.G. Ebbiinghaus, A. Loidl, Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12. Appl. Phys. Lett. 91, 022910–022912 (2007)

    Article  Google Scholar 

  26. L. Fang, M. Shen, F. Zheng, Z. Li, J. Yang, Dielectric responses and multirelaxation behaviors of pure and doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 104, 064110–064115 (2008)

    Article  Google Scholar 

  27. C.M. Wang, K.S. Kao, S.Y. Lin, Y.C. Chen, S.C. Weng, Processing and properties of CaCu3Ti4O12 ceramics. J. Phys. Chem. Solids 69, 608–610 (2008)

    Article  Google Scholar 

  28. L. Liu, H. Fan, P. Fang, Sol–gel derived CaCu3Ti4O12 ceramics: synthesis, characterization and electrical properties. Mater. Res. Bull. 43, 1800–1807 (2008)

    Article  Google Scholar 

  29. H. Yu, H. Liu, D. Luo, M. Cao, Microwave synthesis of high dielectric constant CaCu3Ti4O12. J. Mater. Process. Technol. 208, 145–148 (2008)

    Article  Google Scholar 

  30. A.F.L. Almeida, P.B.A. Fechine, M.P.F. Graça, A.S.B. Sombra, Structural and electrical study of CaCu3Ti4O12 (CCTO) obtained in a new ceramic procedure. J. Mater. Sci. Mater. Electron. 20, 163–170 (2009)

    Article  Google Scholar 

  31. S.K. Jo, Y.H. Han, Sintering behavior and dielectric properties of polycrystalline CaCu3Ti4O12. J. Mater. Sci. Mater Electron. 20, 680–684 (2009)

    Article  Google Scholar 

  32. S. Kwon, C.C. Huang, M.A. Subramanian, D.P. Cann, Effects of cation stoichiometry on the dielectric properties of CaCu3Ti4O12. J. Alloys Compd. 473, 433–436 (2009)

    Article  Google Scholar 

  33. C.M. Wang, S.Y. Lin, K.S. Kao, Y.C. Chen, S.C. Weng, Microstructural and electrical properties of CaTiO3–CaCu3Ti4O12 ceramics. J. Alloys Compd. 491, 423–430 (2010)

    Article  Google Scholar 

  34. T.B. Adams, D.C. Sinclair, A.R. West, Giant barrier capacitance effects in CaCu3Ti4O12. ceramics. Adv. Mater. 35, 1321–1323 (2002)

    Article  Google Scholar 

  35. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153–2155 (2002)

    Article  Google Scholar 

  36. B.A. Bender, M.J. Pan, The effect of processing on the giant dielectric properties of CaCu3Ti4O12. Mater. Sci. Eng. B 117, 339–347 (2005)

    Article  Google Scholar 

  37. L. Ni, X.M. Chen, X.Q. Liu, R.Z. Hhou, Microstucture-dependent giant dielectric response in CaCu3Ti4O12 ceramics. Solid State Commun. 139, 45–50 (2006)

    Article  Google Scholar 

  38. P. Thomas, K. Dwarakanath, K.B.R. Varma, T.R.N. Kutty, Nanoparticles of the giant dielectric material, CaCu3Ti4O12 from a precursor route. J. Phys. Chem. Solids 69, 2594–2604 (2008)

    Article  Google Scholar 

  39. B. Zhu, Z. Wang, Y. Zhang, Z. Yu, R. Xiong, Low temperature fabrication of the giant dielectric material CaCu3Ti4O12 by oxalate coprecipitation method. Mater. Chem. Phys. 113, 746–748 (2009)

    Article  Google Scholar 

  40. C. Masingboon, P. Thongbai, S. Maensiri, T. Yamwong, S. Seraphin, Synthesis and giant dielectric behavior of CaCu3Ti4O12 ceramics prepared by polymerized complex method. Mater. Chem. Phys. 109, 262–270 (2008)

    Article  Google Scholar 

  41. S. Krohns, J. Lu, P. Lunkennheimer, F. Gervais, F. Porcher, A. Loidl, Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12. Eur. Phys. J. B 72, 173–182 (2009)

    Article  Google Scholar 

  42. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, 1992)

    Google Scholar 

  43. P.R. Bueno, R. Tararam, P. Parra, E. Joanni, J.A. Varela, A polaronic stacking fault defect model for CaCu3Ti4O12 material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features. J. Phys. D Appl. Phys. 42(5), 1–9 (2009)

    Article  Google Scholar 

  44. S.Y. Chung, I.D. Kim, S.J. Kang, Effects of annealing temperature on the resistance switching behavior of CaCu3Ti4O12 films. Nat. Mater. 3, 774–778 (2004)

    Article  Google Scholar 

  45. C.C. Homes, T. Vogt, S.M. Shapiro, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–680 (2001)

    Article  Google Scholar 

  46. Y. Huang, D. Shi, Y. Li, Q. Wang, L. Liu, L. Fang, Effect of holding time on the dielectric properties and non-ohmic behavior of CaCu3Ti4O12 capacitor-varistors. J. Mater. Sci. Mater. Electron. 24, 1994–1999 (2013)

    Article  Google Scholar 

  47. T. Prasit, P. Bundit, Y. Teerapon, M. Santi, Current–voltage nonlinear and dielectric properties of CaCu3Ti4O12 ceramics prepared by a simple thermal decomposition method. J. Mater. Sci. Mater. Electron. 23, 795–801 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of the Brazilian research financing institutions: FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Z. Simões.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foschini, C.R., Tararam, R., Simões, A.Z. et al. Rietveld analysis of CaCu3Ti4O12 thin films obtained by RF-sputtering. J Mater Sci: Mater Electron 27, 2175–2182 (2016). https://doi.org/10.1007/s10854-015-4084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4084-y

Keywords

Navigation