Skip to main content
Log in

Enhanced ferromagnetism in Cr doped SrMoO4 scheelite structured compounds

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Wide band gap semiconductors of pure and Cr (5, 10, 15 and 20 %) doped SrMoO4 compounds were synthesized by chemical precipitation method. Powder X-ray diffraction analysis confirms scheelite type tetragonal crystal structure of the compounds. Metal oxide vibrations of the prepared compounds were identified by Fourier transform infra red spectroscopy. Laser Raman spectral studies elucidated the presence of local order- disorder parameters in Cr doped SrMoO4 compounds. Oxidation state of elements present in a compound, chemical composition and the presence of oxygen vacancy were analyzed by X-ray photoelectron spectroscopy. Electron microscopy studies reveal the high degree of agglomeration and change in shape of particles while increasing dopant concentration in SrMoO4 system. Optical absorption spectra evidence the distinctive shift in absorption peak and exhibit red shift. The presence of paramagnetic Cr3+ ion in the host lattice was identified with electron paramagnetic resonance analysis. The magnetization studies reveal the effect of carrier doping on SrMoO4 compounds by exhibiting paramagnetic to saturated ferromagnetic phase transition. The presence of excess carriers by doping leads to Cr–Cr interactions and results in antiferromagnetic ordering in highly doped compounds and the enhancement of magnetic moment have been explained in terms of RKKY interaction theory. The inducement of ferromagnetic behavior by doping Cr in SrMoO4 compounds reveal the possibility of multifunctional behaviour and showing their prompt candidature for the fabrication of optoelectronic and spintronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Zhang, Y. Yiu, M.C. Aronson, S.S. Wong, J. Phys. Chem. C 112, 14816–14824 (2008)

    Article  Google Scholar 

  2. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488–1495 (2001)

    Article  Google Scholar 

  3. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumra, M. Kawasaki, P. Ahmet, T. Chikyow, S.Y. Koshihara, H. Koinuma, Science 291, 854–856 (2001)

    Article  Google Scholar 

  4. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019–1022 (2000)

    Article  Google Scholar 

  5. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173–175 (2005)

    Article  Google Scholar 

  6. Y. Liao, H. Zhang, J. Li, G. Yu, Z. Zhong, F. Bei, L. Jia, S. Zhang, P. Zhong, J. Appl. Phys. 115, 17C304-3 (2014)

    Article  Google Scholar 

  7. S. Sambasivam, D.P. Joseph, J.H. Jeong, B.C. Choi, K.T. Lim, S.S. Kim, T.K. Song, J. Nanopart. Res. 13, 4623–4630 (2011)

    Article  Google Scholar 

  8. V.V. Bannikov, I.R. Shein, V.L. Kozhevnikov, A.L. Ivanovski, J. Magn. Magn. Mater. 320, 936–942 (2008)

    Article  Google Scholar 

  9. A. Sundaresan, C.N.R. Rao, Solid State Commun. 149, 1197–2000 (2009)

    Article  Google Scholar 

  10. R.A. Ruderman, C. Kittel, Phys. Rev. 96, 99–102 (1954)

    Article  Google Scholar 

  11. M. Valant, T. Kolodiazhnyi, I. Arcon, F. Aguesse, A.K. Axelssona, N.M. Alford, Adv. Funct. Mater. 22, 2114–2122 (2012)

    Article  Google Scholar 

  12. D. Errandonea, L. Gracia, R. Lacomba-Perales, A. Polian, J.C. Chervin, J. Appl. Phys. 113, 123510 (2013)

    Article  Google Scholar 

  13. J.G. Rushbrooke, R.E. Ansorge, Nucl. Instrum. Methods Phys. Res. Sect. A 280, 83–90 (1989)

    Article  Google Scholar 

  14. X. Liu, L. Li, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, Dalton Trans. 43, 8814–8825 (2014)

    Article  Google Scholar 

  15. K.K. Aruna, R. Manoharan, Int. J. Hydrog. Energy 8, 2–10 (2013)

    Google Scholar 

  16. G. Jia, C. Wang, S. Xu, J. Phys. Chem. C 114, 17905–17913 (2010)

    Article  Google Scholar 

  17. T. Thongtem, S. Kungwankunakorn, B. Kuntalue, A. Phuruangrat, S. Thongtem, J. Alloys Compd. 506, 475–481 (2010)

    Article  Google Scholar 

  18. J. Liu, J. Ma, B. Lin, Y. Ren, X. Jiang, J. Tao, X. Zhu, Ceram. Int. 34, 1557–1560 (2008)

    Article  Google Scholar 

  19. N. Niu, P. Yang, W. Wang, F. He, S. Gai, D. Wang, J. Lin, Mater. Res. Bull. 46, 333339 (2011)

    Article  Google Scholar 

  20. Y. Wang, P. Yang, P. Ma, F. Qu, S. Gai, N. Niu, F. He, J. Lin, J. Mater. Chem. B. 1, 2056 (2013)

    Article  Google Scholar 

  21. Q.H. Zeng, P. He, H.B. Liang, M.L. Gong, Q. Su, Mater. Chem. Phys. 118, 76–80 (2009)

    Article  Google Scholar 

  22. J. Zhang, R. Li, L. Liu, L. Li, L. Zou, S. Gan, G. Ji, Ultrason. Sonochem. 21, 1736–1744 (2014)

    Article  Google Scholar 

  23. Y.F. Liu, S.H. Dai, Y.N. Lu, H.H. Min, Powder Technol. 221, 412–418 (2012)

    Article  Google Scholar 

  24. X. Lin, X. Qiao, X. Fan, Solid State Sci. 13, 579–583 (2011)

    Article  Google Scholar 

  25. X. Li, L. Guana, M. Sunc, H. Liuc, Z. Yanga, Q. Guo, G. Fu, J. Lumin. 131, 1022–1025 (2011)

    Article  Google Scholar 

  26. D. Errandonea, R.S. Kumar, X. Ma, C. Tu, J. Solid State Chem. 181, 355–364 (2008)

    Article  Google Scholar 

  27. L. Tang, J. Wang, J. Zhai J. Electron. Mater. 42, 2542–2548 (2013)

    Article  Google Scholar 

  28. F.A. Rabuffetti, S.P. Culver, L. Suescun, R.L. Brutchey, Inorg. Chem. 53, 1056–1061 (2014)

    Article  Google Scholar 

  29. X. Li, Z. Yang, L. Guan, Q. Guo, Mater. Lett. 63, 1096–1098 (2009)

    Article  Google Scholar 

  30. H. Lei, X. Zhu, Y. Sun, W. Song, J. Cryst. Growth 310, 789–793 (2008)

    Article  Google Scholar 

  31. J. Bi, C. Cui, X. Lai, F. Shi, D. Gao, Mater. Res. Bull. 43, 743–747 (2008)

    Article  Google Scholar 

  32. T. Thongtem, A. Phuruangrat, S. Thongtem, J. Nanopart. Res. 12, 2287–2294 (2010)

    Article  Google Scholar 

  33. A.P.A. Marques, M.T.S. Tanaka, E. Longo, E.R. Leite, I.L.V. Rosa, J. Fluoresc. 21, 893–899 (2011)

    Article  Google Scholar 

  34. J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.A. Varela, P.S. Pizani, E. Longo, Chem. Eng. J. 140, 632–637 (2008)

    Article  Google Scholar 

  35. S. Lei, X. Peng, X. Li, Z. Liang, Y. Yang, B. Cheng, Y. Xiao, L. Zhou, Mater. Res. Bull. 46, 601–608 (2011)

    Article  Google Scholar 

  36. J. Bi, L. Wu, Y. Zhang, Z. Li, J. Li, X. Fu, Appl. Catal. B Environ. 91, 135–143 (2009)

    Article  Google Scholar 

  37. M. Ashokkumar, S. Muthukumaran, Powder Technol. 258, 157–164 (2014)

    Article  Google Scholar 

  38. M. Muralidharan, V. Anbarasu, A. Elaya Perumal, K. Sivakumar, J. Mater. Sci. Mater. Electron. 25, 4078–4087 (2014)

    Article  Google Scholar 

  39. G. Ouyang, G.W. Yang, C.Q. Sun, W.G. Zhu, Small 4, 1359–1362 (2008)

    Article  Google Scholar 

  40. Z. Zhu, A. Zhang, G. Ouyang, G. Yang, J. Phys. Chem. C 115, 6462–6466 (2011)

    Article  Google Scholar 

  41. S.P. Culver, F.A. Rabuffetti, S. Zhou, M. Mecklenburg, Y. Song, B.C. Melot, R.L. Brutchey, Chem. Mater. 25, 4129–4134 (2013)

    Article  Google Scholar 

  42. P. Yang, C. Li, W. Wang, Z. Quanb, S. Gai, J. Lin, J. Solid State Chem. 182, 2510–2520 (2009)

    Article  Google Scholar 

  43. D. Chen, K. Tang, F. Li, H. Zheng, Cryst. Growth Des. 6, 1 (2006)

    Article  Google Scholar 

  44. J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Phys. Chem. Chem. Phys. 2, 1319–1324 (2000)

    Article  Google Scholar 

  45. M.C. Biesinger, C. Brown, J.R. Mycroft, R.D. Davidson, N.S. McIntyre, Surf. Interface Anal. 36, 1550–1563 (2004)

    Article  Google Scholar 

  46. M. Mancheva, R. Iordanova, Y. Dimitriev, J. Alloys Compd. 509, 15–20 (2011)

    Article  Google Scholar 

  47. H. Li, X.Y. Kuang, A.J. Mao, Z.H. Wang, Solid State Commun. 189, 47–51 (2014)

    Article  Google Scholar 

  48. D.V. Azamat, A. Dejneka, J. Lancock, V.A. Trepakov, L. Jastrabik, J. Appl. Phys. 113, 174106-6 (2013)

    Article  Google Scholar 

  49. P. Liu, J. Tang, J. Phys, Condens. Matter. 25, 125802 (2013)

    Article  Google Scholar 

  50. T. Bora, B. Samantaray, S. Mohanty, S. Ravi, IEEE Trans. Magn. 47, 3991–3994 (2011)

    Article  Google Scholar 

  51. J. Inba, T. Katsufuji, Phys. Rev. B. 72, 052408 (2005)

    Article  Google Scholar 

  52. Y. Su, J. Zhang, Z. Feng, L. Li, B. Li, Y. Zhou, Z. Chen, S. Cao, J. Appl. Phys. 108, 013905 (2012)

    Article  Google Scholar 

  53. K. Yoshii, Mater. Res. Bull. 47, 3243–3248 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Authors greatly acknowledge Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology Madras (IITM), Chennai and Ms. J. Sridevi, Chemical Physics Lab, CLRI, Chennai for their support on EPR characterizing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muralidharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muralidharan, M., Anbarasu, V., Elaya Perumal, A. et al. Enhanced ferromagnetism in Cr doped SrMoO4 scheelite structured compounds. J Mater Sci: Mater Electron 27, 2545–2556 (2016). https://doi.org/10.1007/s10854-015-4057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4057-1

Keywords

Navigation