Skip to main content
Log in

Complex chemical bond theory, Raman spectra and microwave dielectric properties of low loss ceramics NdNbO4–xAl2O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, low loss microwave dielectric materials of NdNbO4–x wt% Al2O3 ceramics were prepared via a solid-state reaction method. The complex chemical bond theory, phase composition, standard deviation (σ) of the bond angles, microstructures, microwave dielectric properties and vibrational phonon modes were investigated. Microscopic analysis showed that sintered specimens presented single monoclinic fergusonite phase. The Rietveld refinements and Raman spectra were used to evaluate the correlation between the complex chemical bond theory and the microwave dielectric properties. With an increase of Al2O3 content, the Raman shift of Ag (331 and 808 cm−1) toward to the bigger value direction and the FWHM of Ag (331 and 808 cm−1) decrease, which lead to a decrease in bond ionicity and increase in lattice energy. The microwave dielectric properties of NdNbO4–x wt% Al2O3 exhibit closely relationship with the complex chemical bond theory. The variation trend of dielectric constant was accordance with the bond ionicity. The Q × f value and τ f value were mainly dependence on the lattice energy and bond energy, respectively. Fine microwave dielectric properties for NdNbO4–3 wt% Al2O3 ceramic was obtained with εr = 18.1, Q × f = 54,700 GHz (9.1 GHz), τ f  = −0.51 ppm/°C sintered at 1150 °C for 4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.J. Cava, J. Mater. Chem. 11, 54–62 (2001)

    Article  Google Scholar 

  2. I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    Google Scholar 

  3. M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57–90 (2008)

    Article  Google Scholar 

  4. J. Guo, C.A. Randall, G.Q. Zhang, D. Zhou, Y.Y. Chen, H. Wang, J. Mater. Chem. C 2, 7364–7372 (2014)

    Article  Google Scholar 

  5. C. Nico, M.R.N. Soares, J. Rodrigues, M. Matos, R. Monteiro, M.P.F. Graça, M.A. Valente, F.M. Costa, T. Monteiro, J. Phys. Chem. C 115, 4879–4886 (2011)

    Article  Google Scholar 

  6. M.R.N. Soares, S. Leite, C. Nico, M. Peres et al., J. Eur. Ceram. Soc. 31, 501–506 (2011)

    Article  Google Scholar 

  7. Y. Wu, D. Zhou, J. Guo, L.X. Pang, J. Mater. Sci. Mater. Electron. 24, 1505 (2013)

    Article  Google Scholar 

  8. M. Nyman, M.A. Rodriguez, L.E.S. Rohwer et al., Chem. Mater. 21, 4731–4737 (2009)

    Article  Google Scholar 

  9. D.W. Kim, D.K. Kwon, S.H. Yoon, K.S. Hong, J. Am. Ceram. Soc. 89, 3861–3864 (2006)

    Article  Google Scholar 

  10. P. Zhang, T. Wang, T.W.S. Xia, L.X. Li, J. Alloy. Compd. 535, 1–4 (2012)

    Article  Google Scholar 

  11. P. Zhang, Z.K. Song, Y. Wang, Y.M. Han et al., J. Alloy. Compd. 581, 741–746 (2013)

    Article  Google Scholar 

  12. P. Zhang, Z.K. Song, Y. Wang, L.X. Li, J. Am. Ceram. Soc. 97, 976–981 (2014)

    Article  Google Scholar 

  13. W.S. Xia, L.X. Li, P.F. Ning, Q.W. Liao, J. Am. Ceram. Soc. 95, 1–6 (2012)

    Article  Google Scholar 

  14. P. Zhang, Y.G. Zhao, L.X. Li, Phys. Chem. Chem. Phys. 17, 16692–16698 (2015)

    Article  Google Scholar 

  15. P. Zhang, Y.G. Zhao, J. Alloy. Compd. 647, 386–391 (2015)

    Article  Google Scholar 

  16. R.D. Shannon, J. Appl. Phys. 73, 348–366 (1993)

    Article  Google Scholar 

  17. A. Santoro, M. Marezio, R.S. Roth, D. Minor, J. Solid State Chem. 35, 167–175 (1980)

    Article  Google Scholar 

  18. J.M. Jehng, I.E. Wachs, Chem. Mater. 3, 100–107 (1991)

    Article  Google Scholar 

  19. G. Blasse, J. Solid State Chem. 7, 169–171 (1973)

    Article  Google Scholar 

  20. S.K. Singh, V.R.K. Murthy, Mater. Chem. Phys. 160, 187–193 (2015)

    Article  Google Scholar 

  21. K.P.F. Siqueira, R.L. Moreira, A. Dias, Chem. Mater. 22, 2668–2674 (2010)

    Article  Google Scholar 

  22. D.L. Rousseau, R.P. Bauman, S.P.S. Porto, J. Raman Spectrosc. 10, 253–290 (1981)

    Article  Google Scholar 

  23. M.P.F. Graça, M.V. Peixoto, N. Ferreira, J. Rodrigues, C. Nico, F.M. Costa, T. Monteiro, J. Mater. Chem. C 1, 2913–2919 (2013)

    Article  Google Scholar 

  24. W.E. Smith, G. Dent, Modern Raman Spectroscopy—A Practical Approach (Wiley, NJ, 2005)

    Google Scholar 

  25. S.D. Ramarao, V.R.K. Murthy, Phys. Chem. Chem. Phys. 17, 12623–12633 (2015)

    Article  Google Scholar 

  26. D. Zhou, W.B. Li, H.H. Xi, L.X. Pang, G.S. Pang, J. Mater. Chem. C 3, 2582–2588 (2015)

    Article  Google Scholar 

  27. S.D. Ramarao, V.R.K. Murthy, Dalton Trans. 44, 2311–2324 (2015)

    Article  Google Scholar 

  28. D.F. Xue, S.Y. Zhang, J. Phys. Condens. Matter 8, 1949–1956 (1996)

    Article  Google Scholar 

  29. R.D. Shannon, Acta Cryst. A32, 751–767 (1976)

    Article  Google Scholar 

  30. A.F. Kapustinskii, Lattice energy of ionic crystals. Rev. Chem. Soc. 10, 283–294 (1956)

    Article  Google Scholar 

  31. Z.J. Wu, Q.B. Meng, S.Y. Zhang, Phys. Rev. B 58, 958–962 (1998)

    Article  Google Scholar 

  32. Q.B. Meng, Z.J. Wu, S.Y. Zhang, J. Phys. Condens. Matter 10, L85–L88 (1998)

    Article  Google Scholar 

  33. J.C. Phillips, Phys. Rev. Lett. 20, 550–553 (1967)

    Article  Google Scholar 

  34. J.C. Phillips, J.A. Van Vechten, Phys. Rev. Lett. 22, 705–708 (1969)

    Article  Google Scholar 

  35. J.A. Ven, Vechten. Phys. Rev. 182, 891–905 (1969)

    Article  Google Scholar 

  36. J.C. Phillips, Rev. Mod. Phys. 42, 317–356 (1970)

    Article  Google Scholar 

  37. D. Quane, J. Chem. Educ. 47, 396–398 (1970)

    Article  Google Scholar 

  38. M.G. Trefry, E.N. Maslen, M.A. Spackman, J. Phys. C 20, 19–28 (1987)

    Article  Google Scholar 

  39. L. Glasser, Inorg. Chem. 34, 4935–4936 (1995)

    Article  Google Scholar 

  40. Y.A. Abramov, J. Phys. Chem. A 101, 5725–5728 (1997)

    Article  Google Scholar 

  41. H.D.B. Jenkins, H.K. Roobottom, J. Passmore, Inorg. Chem. 38, 3609–3620 (1999)

    Article  Google Scholar 

  42. L. Glasser, H.D.B. Jenkins, J. Am. Chem. Soc. 122, 632–638 (2000)

    Article  Google Scholar 

  43. H.D.B. Jenkins, D. Tudela, L. Glasser, Inorg. Chem. 41, 2364–2367 (2002)

    Article  Google Scholar 

  44. D.T. Liu, S.Y. Zhang, Z.J. Wu, Inorg. Chem. 42, 2465–2469 (2003)

    Article  Google Scholar 

  45. V.V. Oshchapovskii, Russ. J. Gene. Chem. 78, 532–542 (2008)

    Article  Google Scholar 

  46. R.T. Sandderson, Inorg. Nucl. Chem. 28, 1553–1565 (1966)

    Article  Google Scholar 

  47. R.T. Sandderson, Inorg. Nucl. Chem. 30, 375–393 (1968)

    Article  Google Scholar 

  48. R.T. Sandderson, Chemical Bonds and Bond Energy (Academic Press, New York, 1971)

    Google Scholar 

  49. R.T. Sandderson, J. Am. Chem. Soc. 105, 2259–2261 (1983)

    Article  Google Scholar 

  50. P. Zhang, Y.G. Zhao, X.Y. Wang, J. Alloys Compd. 644, 621–625 (2015)

    Article  Google Scholar 

  51. Q.W. Liao, L.X. Li, J. Am. Ceram. Soc. 95, 1501–1503 (2012)

    Article  Google Scholar 

  52. S.S. Batsanov, Russ. Chem. Rev. 51, 684–697 (1982)

    Article  Google Scholar 

  53. C.L. Huang, J.Y. Chen, J. Am. Ceram. Soc. 93, 1248–1251 (2010)

    Google Scholar 

  54. W.S. Xia, L.X. Li, L.J. Ji, P. Zhang, P.F. Ning, L.W. Liao, Mater. Lett. 66, 296–298 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged supports from the Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education (Tianjin University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, P. Complex chemical bond theory, Raman spectra and microwave dielectric properties of low loss ceramics NdNbO4–xAl2O3 . J Mater Sci: Mater Electron 27, 2511–2522 (2016). https://doi.org/10.1007/s10854-015-4052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4052-6

Keywords

Navigation