Skip to main content
Log in

Internal relations between crystal structures and dielectric properties of (1-x)BaWO4-xTiO2 composite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1-x)BaWO4-xTiO2 (x = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, BWT) ceramics were prepared by traditional solid-state method. The XRD patterns indicate that the BWT ceramics exist as composites, and the Raman spectra show that as TiO2 increases, the vext mode shifts to a low wavenumber and the Ba–O bond length decreases. The variations in FWHM values of the v3(Eg) modes and c/a values indicate the changes in the ordered structures that lead to the increase in dielectric loss. The infrared spectra were fitted by the FPSQ model, and the external mode (Eu) contributes most to the dielectric properties, which is related to the Ba–O bond vibration. With the increase in x values, the τf values increase from − 101.61 to − 6.71 ppm/°C, the εr values increase from 8.03 to 9.49, and the 0.75BaWO4–0.25TiO2 ceramic with stable temperature coefficient was obtained: εr = 9.49, Q × f = 20,602 GHz (f = 17.99 GHz), τf =  − 6.71 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Lei, H. Fan, W. Chen, Z. Liu, M. Li, Structure, microwave dielectric properties, and novel low-temperature sintering of xSrTiO3–(1–x)LaAlO3 ceramics with LTCC application. J. Am. Ceram. Soc. 100(1), 235 (2017)

    Article  CAS  Google Scholar 

  2. L. Ma, J. Fang, S. Lei, X. Ren, Z. Liu, Novel sintering and band gap engineering of ZnTiO3 ceramics with excellent microwave dielectric properties. J. Mater. Chem. C 5, 4040 (2017)

    Article  Google Scholar 

  3. E.C. Xiao, Z. Cao, J. Li, X.H. Li, M. Liu, Z. Yue, Y. Chen, G. Chen, K. Song, H. Zhou, Crystal structure, dielectric properties, and lattice vibrational characteristics of LiNiPO4 ceramics sintered at different temperatures. J. Am. Ceram. Soc. 103, 2528 (2020)

    Article  CAS  Google Scholar 

  4. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89(7), 2063–2072 (2010)

    Google Scholar 

  5. Y.C. Chen, Microwave dielectric properties of (Mg(1–x)Cox)2SnO4 ceramics for application in dual-band inverted-E-shaped monopole antenna. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(12), 2531–2538 (2011)

    Article  Google Scholar 

  6. J. Guo, D. Zhou, S.L. Zou, H. Wang, L.X. Pang, X. Yao, Microwave dielectric ceramics Li2MO4−TiO2 (M=Mo, W) with low sintering temperatures. J. Am. Ceram. Soc. 97(6), 1819–1822 (2014)

    Article  CAS  Google Scholar 

  7. D. Zhou, L.-X. Pang, D.-W. Wang, H.-H. Guo, F. Yang, Z.-M. Qi, C. Li, B.-B. Jin, I.M. Reaney, Crystal structure, impedance and broadband dielectric spectra of ordered scheelite-structured Bi(Sc1/3Mo2/3)O4 ceramic. J. Eur. Ceram. Soc. 38(4), 1556–1561 (2018)

    Article  CAS  Google Scholar 

  8. S. Lei, H. Fan, X. Ren, J. Fang, L. Ma, H. Tian, Microstructure, phase evolution and interfacial effects in a new Zn0.9Mg0.1TiO3-ZnNb2O6 ceramic system with greatly induced improvement in microwave dielectric properties. Scripta Mater. 146, 154–159 (2018)

    Article  CAS  Google Scholar 

  9. L. Cheng, P. Liu, Q.U. Shi-Xian, Z. Huai-Wu, Microwave dielectric properties of AWO4 (A=Ca, Ba, Sr) ceramics synthesized via high energy ball milling method. J. Alloys Compd. 581, 553–557 (2013)

    Article  CAS  Google Scholar 

  10. R. Lacombaperales, D. Errandonea, A. Segura, J. Ruizfuertes, P. Rodríguezhernández, S. Radescu, J. Lópezsolano, A. Mujica, A. Muñoz, A combined high-pressure experimental and theoretical study of the electronic band-structure of scheelite-type AWO4 (A = Ca, Sr, Ba, Pb) compounds. J. Appl. Phys. 110(4), 2899 (2011)

    Google Scholar 

  11. F. Cheviré, F. Tessier, R. Marchand, New scheelite-type oxynitrides in systems RWO3N–AWO4 (R = rare-earth element; A = Ca, Sr) from precursors obtained by the citrate route. Mater. Res. Bull. 39(7–8), 1091–1101 (2004)

    Article  Google Scholar 

  12. M.M. Krzmanc, M. Logar, B. Budic, D. Suvorov, Dielectric and microstructural study of the SrWO4, BaWO4, and CaWO4 scheelite ceramics. J. Am. Ceram. Soc. 94(8), 2464 (2011)

  13. Z. Yue, F. Shi, Y. Gu, C. Li, Far-infrared reflection study on crystal structures and dielectric properties of Ba(Mg1/3Ta2/3)O3-BaWO4 ceramics. J. Mater. Mater. Electron. 26(2), 711–718 (2015)

    Article  CAS  Google Scholar 

  14. S.H. Yoon, D.-W. Kim, S.-Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26(10–11), 2051–2054 (2006)

    Article  CAS  Google Scholar 

  15. E.-C. Xiao, J. Li, J. Wang, C. Xing, M. Guo, H. Qiao, Q. Wang, Z.-M. Qi, G. Dou, F. Shi, Phonon characteristics and dielectric properties of BaMoO4 ceramic. J. Materiomics 4(4), 383–389 (2018)

    Article  Google Scholar 

  16. K.H. Yoon, P.K. Dong, E.S. Kim, Effect of BaWO4 on the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics. J. Am. Ceram. Soc. 77(4), 1062–1066 (2010)

    Article  Google Scholar 

  17. W. Zhen, J.B. Jian, Low temperature sintering and microwave dielectric properties of Ba3(PO4)2–BaWO4 composite ceramics. Ceram. Int. 40(6), 8507–8511 (2014)

    Article  Google Scholar 

  18. J. Lv, E. C. Xiao, X. H. Li, X. Dong, F. Shi, Crystal structures dielectric properties and lattice vibrational characteristics of (1-x)CaWO4-xTiO2 composite ceramics. Ceram. Int. 46(3), 3715 (2019)

  19. R.J. Cava, Dielectric materials for applications in microwavecommunications. J. Mater. Chem. 11(11), 54–62 (2000)

    Google Scholar 

  20. J. Guo, D. Zhou, H. Wang, X. Yao, Microwave dielectric properties of (1–x)ZnMoO4- xTiO2 composite ceramics. J. Alloys Compd. 509(19), 5863–5865 (2011)

    Article  CAS  Google Scholar 

  21. C. Li, C. Yin, J. Chen, H. Xiang, Y. Tang, L. Fang, Crystal structure and dielectric properties of germanate melilites Ba2MGe2O7 (M = Mg and Zn) with low permittivity. J. Eur. Ceram. Soc. 38(15), 5246–5251 (2018)

    Article  CAS  Google Scholar 

  22. S. Nishigaki, S. Yano, H. Kato, T. Hirai, T. Nonomura, ChemInform abstract: BaO-TiO2-WO3 microwave ceramics and crystalline BaWO4. Cheminform 71, 11 (1988)

  23. W.C. Tzou, Y.C. Chen, S.L. Chang, C.F. Yang, Microwave dielectric characteristics of glass-added (1–x)Al2O3-xTiO2 ceramics. Jpn. J. Appl. Phys. 41(41), 7422–7425 (2002)

    Article  CAS  Google Scholar 

  24. J. Guo, D. Zhou, H. Wang, Y. Chen, Y. Zeng, F. Xiang, Y. Wu, X. Yao, Microwave and infrared dielectric response of temperature stable (1–x)BaMoO4-xTiO2 composite ceramics. J. Am. Ceram. Soc. 95(1), 232–237 (2012)

    Article  CAS  Google Scholar 

  25. I.S. Cho, S.K. Kang, D.W. Kim, K.S. Hong, Mixture behavior and microwave dielectric properties of (1–x)Ca2P2O7-xTiO2. J. Eur. Ceram. Soc. 26(10), 2007–2010 (2006)

    Article  CAS  Google Scholar 

  26. C. Yin, H. Xiang, C. Li, H. Porwal, L. Fang, Low-temperature sintering and thermal stability of Li2GeO3-based microwave dielectric ceramics with low permittivity. J. Am. Ceram. Soc. 101(10), 4608–4614 (2018)

    Article  CAS  Google Scholar 

  27. W. Wang, T. Widmann, L. Song, T. Froeschl, N. Huesing, G. Mo, Z. Wu, P. Zhang, S.V. Roth, H. Fan, Aging of low-temperature derived highly flexible nanostructured TiO2/P3HT hybrid films during bending. J. Mater. Chem. A 7, 10805 (2019)

    Article  CAS  Google Scholar 

  28. J. Guo, D. Zhou, S.L. Zou, H. Wang, L.X. Pang, X. Yao, Microwave dielectric ceramics Li2MO4-TiO2 (M = Mo, W) with low sintering temperatures. J. Am. Ceram. Soc. 97(6), 1819–1822 (2014)

    Article  CAS  Google Scholar 

  29. W. Wang, W. Bai, B. Shen, J. Zhai, Microwave dielectric properties of low temperature sintered ZnWO4–TiO2 composite ceramics. Ceram. Int. 41, S435–S440 (2015)

    Article  CAS  Google Scholar 

  30. E.S. Kim, J.J. Chang, P.G. Clem, Effects of crystal structure on the microwave dielectric properties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics. J. Am. Ceram. Soc. 95(9), 2934–2938 (2012)

    Article  CAS  Google Scholar 

  31. M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. Condens. Matter 24(19), 1614–1621 (2012)

    Article  Google Scholar 

  32. L.X. Pang, H. Wang, D. Zhou, X. Yao, A new temperature stable microwave dielectric with low-firing temperature in Bi2 MoO6-TiO2 system. J. Alloys Compd. 493(1), 626–629 (2010)

    Article  CAS  Google Scholar 

  33. C. Xing, J. Li, J. Wang, H. Chen, H. Qiao, X. Yin, Q. Wang, Z.M. Qi, F. Shi, Internal relations between crystal structures and intrinsic properties of nonstoichiometric Ba1+xMoO4 ceramics. Inorg. Chem. 57(12), 7121–7128 (2018)

    Article  CAS  Google Scholar 

  34. C.L. Diao, C.H. Wang, N.N. Luo, Z.M. Qi, S. Tao, Y.Y. Wang, L. Jing, Q.C. Wang, X.J. Kuang, F. Liang, First-principle calculation and assignment for vibrational spectra of Ba(Mg1/2W1/2)O3 microwave dielectric ceramic. J. Am. Ceram. Soc. 96(9), 2898–2905 (2013)

    Article  CAS  Google Scholar 

  35. J. López-Solano, P. Rodríguez-Hernández, S. Radescu, A. Mujica, A. Muñoz, D. Errandonea, F. J. Manjón, J. Pellicer-Porres, N. Garro, A. Segura, Crystal stability and pressure-induced phase transitions in scheelite AWO4 (A = Ca, Sr, Ba, Pb, Eu) binary oxides. I: A review of recent ab initio calculations ADXRD, XANES, and Raman studies. Phys. Status Solidi 244(1), 325–330 (2010)

  36. T. Thongtem, S. Kaowphong, S. Thongtem, Influence of cetyltrimethylammonium bromide on the morphology of AWO4 (A = Ca, Sr) prepared by cyclic microwave irradiation. Appl. Surf. Sci. 254(23), 7765–7769 (2008)

    Article  CAS  Google Scholar 

  37. J. Li, J. Wang, G. Fu, C. Xing, X. Yin, H. Qiao, H. Chen, Z. Qi, Q. Wang, F. Shi, Crystal structure characteristics, intrinsic properties, and vibrational spectra of non-stoichiometric Ca1+xWO4 ceramics. J. Appl. Phys. 124(4), 044104 (2018)

    Article  Google Scholar 

  38. G. Jing, Z. Di, W. Lu, W. Hong, S. Tao, Z.M. Qi, Y. Xi, Infrared spectra, Raman spectra, microwave dielectric properties and simulation for effective permittivity of temperature stable ceramics AMoO4-TiO2 (A = Ca, Sr). Dalton Trans. 42(5), 1483–1491 (2013)

    Article  Google Scholar 

  39. H. Yang, S. Zhang, H. Yang, X. Zhang, E. Li, Structural evolution and microwave dielectric properties of xZn0.5Ti0.5NbO4-(1-x)Zn0.15Nb0.3Ti0.55O2 ceramics. Inorg. Chem. 57(14), 8264–8275 (2018)

  40. E. Longo, Photoluminescent behavior of BaWO4 powders processed in microwave-hydrothermal. J. Alloys Compd. 474(1), 195–200 (2009)

    Google Scholar 

  41. F. Q. Liu, H. R. Xia, D. G. Ran, S. Q. Sun, Z. C. Ling, G. E. Wen Wei, H. J. Zhang, Raman Spectra of BaWO4 Crystal. J. Light Scatt. (2006)

  42. S. Desgreniers, S. Jandl, C. Carlone, Temperature dependence of the Raman active phonons in CaWO4, SrWO4 and BaWO4. J. Phys. Chem. Solids 45(11), 1105–1109 (1984)

    Article  CAS  Google Scholar 

  43. L.S. Cavalcante, J.C. Sczancoski, L.F. Lima, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, E. Longo, Synthesis, characterization, anisotropic growth and photoluminescence of BaWO4. Cryst. Growth Des. 9(2), 1002–1012 (2009)

    Article  CAS  Google Scholar 

  44. T.T. Basiev, M.N. Basieva, M.E. Doroshenko, V. V. Fedorov, V. V. Osiko, S. B. Mirov, Stimulated Raman scattering in mid IR spectral range 2.31–2.75–3.7 µm in BaWO4 crystal under 1.9 and 1.56 µm pumping. Laser Phys. Lett. 3(1), 17–20 (2010)

  45. C.L. Diao, C.H. Wang, N.N. Luo, Z.M. Qi, X.-P. Jing, First-principle calculation and assignment for vibrational spectra of Ba(Mg1/2W1/2)O3 microwave dielectric ceramic. J. Appl. Phys. 115(11), 787–791 (2014)

    Article  Google Scholar 

  46. H. Chen, X. Chao, J. Li, H. Qiao, J. Yang, Q. He, H. Dong, W. Jing, H. Sun, Z.M. Qi, Crystal structure, phonon characteristic, and intrinsic properties of Sm(Mg1/2 Sn1/2)O3 double perovskite ceramic. J. Mater. Sci.: Mater. Electron. 28(19), 14156–14162 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant 11874240), Guangxi Information Materials Key Laboratory Open Research Fund (171007-K), State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (No. KF201811), and the Opening Project of Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences (Grant No. KLIFMD201803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lv, J., Xiao, Ec. et al. Internal relations between crystal structures and dielectric properties of (1-x)BaWO4-xTiO2 composite ceramics. J Mater Sci: Mater Electron 31, 19961–19973 (2020). https://doi.org/10.1007/s10854-020-04519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04519-9

Navigation