Skip to main content
Log in

Effect of tungsten (W6+) metal ion dopant on structural, optical and photocatalytic activity of SnO2 nanoparticles by a novel microwave method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, we have successfully synthesized pristine and tungsten (W) doped SnO2 nanoparticles by using novel and one-step microwave irradiation method for the first time. Powder X-ray diffraction results suggest that both pure and W doped SnO2 nanoparticles are crystalline with tetragonal rutile type structure (space group of P42/mnm) formed directly during the microwave irradiation process. The morphology of the nanoparticles are in spherical shaped and the average particle sizes were around 23–32 nm was observed for pure and W doped SnO2 nanoparticles as investigated by transmission electron microscopy analysis. UV–Vis transmission spectra analysis revealed that optical transmission is decreases with the increase of W concentrations (0–10 wt%) and the red shift was observed. The calculated band gap energy of pure SnO2 was found to be 3.61 eV and further it was decreases to 3.47 eV for W (10 wt%) doped SnO2. The photocatalytic properties of the pure and W doped SnO2 samples were evaluated by the degradation of methylene blue rhodamine B in an aqueous solution under visible light irradiation. The photocatalytic activity and reusability of W (10 wt%) doped SnO2 was much higher than that of the pristine SnO2. The improvement mechanism by W doping was also discussed. The samples were further characterized by photoluminescence and Fourier transforms infra- red spectra analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, J. Mater. Sci. Mater. Electron. 25, 730–735 (2014)

    Article  Google Scholar 

  2. M. Parthibavarman, B. Renganathan, D. Sastikumar, Curr. Appl. Phys. 13, 1537–1544 (2013)

    Article  Google Scholar 

  3. M. Saravanakumar, S. Agilan, N. Muthukumarasamy, V. Rukkumani, A. Marusamy, P. Uma mahshwari, A. Ranjitha, Int. J. ChemTech Res. 6, 5429–5432 (2014)

    Google Scholar 

  4. B. Cheng, J.M. Russell, W. Shi, L. Zhang, E.T. Samulski, J. Am. Chem. Soc. 126, 5972 (2004)

    Article  Google Scholar 

  5. Y. Dabin, D. Wang, W. Yu, Y. Qian, Mater. Lett. 58, 84–87 (2006)

    Google Scholar 

  6. T. Krishnakumar, R. Jayaprakash, N. Pinna, V.N. Singh, B.R. Mehta, A.R. Phani, Mater. Lett. 63, 242–245 (2009)

    Article  Google Scholar 

  7. L.B. Fraigi, D.G. Lamas, N.E. Walsoe de Reca, Mater. Lett. 47, 262–266 (2001)

    Article  Google Scholar 

  8. L. Korosi, S. Papp, V. Meynen, P. Cool, E.F. Vansant, I. Dekany, Colloids Surf A Physicochem Eng Asp. 268, 147–154 (2005)

    Article  Google Scholar 

  9. H. Zhaohui, G. Neng, L. Fanqing, Z. Wanqun, Z. Huaquiao, Q. Yitai, Mater. Lett. 48, 99–103 (2001)

    Article  Google Scholar 

  10. G. Sakai, N.S. Baik, N. Miura, N. Yamazoe, Sens. Actuators B 77, 116 (2001)

    Article  Google Scholar 

  11. X.L. Hu, Y.-J. Zhu, S.-W. Wang, Mater. Chem. Phys. 88, 421–426 (2004)

    Article  Google Scholar 

  12. L.M. Cukrov, P.G. McCormick, K. Galatsis, W. Wlodarski, Sens. Actuators B 77, 491–495 (2007)

    Article  Google Scholar 

  13. A.E. Shalan, M. Rasly, I. Osama, M.M. Rashad, Ceramics Int. 40, 11619–11626 (2014)

    Article  Google Scholar 

  14. W.X. Jin, S.Y. Ma, Z.Z. Tie, J.J. Wei, J. Luo, X.H. Jiang, T.T. Wang, W.Q. Li, L. Cheng, Y.Z. Mao, Sensors and Actuators B Chem. 213, 171–180 (2015)

    Article  Google Scholar 

  15. T. Jia, J. Chen, Z. Deng, F. Fang, J. Zhao, X. Wang, F. Long, Mater. Sci. Eng., B 189, 32–33 (2014)

    Article  Google Scholar 

  16. T. Duan, Q. Wen, Y. Chen, Y. Zhou, Y. Duan, J. Hazard. Mater. 120, 304–314 (2014)

    Article  Google Scholar 

  17. M. Patyhibavarman, V. Haraiharan, C. Sekar, V.N. Singh, J. Optoelectron. Adv. Mater. 12, 1894–1898 (2010)

    Google Scholar 

  18. S.S. Roy, J. Podder, Gilberto. J. Optoelect. Adv. Mater. 12, 1479–1484 (2010)

    Google Scholar 

  19. R.K. Nath, S.S. Nath, Kumar Sunar. J. Anal. Sci. Technol. 3, 85–94 (2012)

    Article  Google Scholar 

  20. L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, L.M. Wang, F. Gao, J. Mater. Sci. Mater. Electron. 19, 868–874 (2008)

    Article  Google Scholar 

  21. T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, Mater. Lett. 63, 896–898 (2009)

    Article  Google Scholar 

  22. T. Krishnakumar, N. Pinna, K.P. Kumari, K. Perumal, R. Jayaprakash, Mater. Lett. 62, 3437–3440 (2008)

    Article  Google Scholar 

  23. Y.-J. Lin, C.-J. Wu, Surf. Coat. Technol. 88, 239–247 (1996)

    Article  Google Scholar 

  24. S. Vadivel, G. Rajarajan, J. Mater. Sci. Mater. Electron. 26, 3155–3162 (2015)

    Article  Google Scholar 

  25. S. Vadivel, G. Rajarajan, J. Mater. Sci. Mater. Electron. 26, 5863–5870 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rajeshwaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeshwaran, P., Sivarajan, A., Raja, G. et al. Effect of tungsten (W6+) metal ion dopant on structural, optical and photocatalytic activity of SnO2 nanoparticles by a novel microwave method. J Mater Sci: Mater Electron 27, 2419–2425 (2016). https://doi.org/10.1007/s10854-015-4040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4040-x

Keywords

Navigation