Skip to main content
Log in

Dielectric responses of Na0.65Bi0.45Cu3Ti4O12 ceramics based on the composition design of changing the Na/Bi ratio

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Na0.65Bi0.45Cu3Ti4O12 ceramics were successful prepared by the conventional solid-state reaction technique. Compared to Na0.50Bi0.50Cu3Ti4O12 (NBCTO), the composition of Na0.65Bi0.45Cu3Ti4O12 was designed in terms of changing the Na/Bi ratio. Colossal dielectric permittivity of ~1.2 × 104 at 1 kHz was obtained in Na0.65Bi0.45Cu3Ti4O12 ceramics. Interestingly, three frequency dispersions were observed in the frequency dependence of dielectric constant measured at different temperatures. The investigation of electric modulus displayed that the giant low-frequency dielectric constant was attributed to Maxwell–Wagner polarization at the grain boundaries and the frequency dispersion in middle-frequency range was due to the grain polarization. Except grain response and grain boundaries response reflected by two semicircles in the impedance spectroscopy, another electrical response associated with nonzero high frequency intercept was found. The grain resistance Rg and grain boundaries resistance R gb was ~600 Ω and 3.9 × 105 Ω, respectively. The large intrinsic permittivity as high as ~700 was obtained. Furthermore, two dielectric anomalies observed in the temperature dependent of dielectric constant were discussed in detail. The results indicated change in the Na/Bi ratio had a significant effect on the electrical properties of NBCTO ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.T. Fang, H.K. Shiau, J. Am. Ceram. Soc. 87, 2072 (2004)

    Article  Google Scholar 

  2. B.S. Prakash, K.B.R. Varma, J. Phys. Chem. Solids 68, 490 (2007)

    Article  Google Scholar 

  3. B.S. Prakash, K.B.R. Varma, Phys. B 382, 312 (2006)

    Article  Google Scholar 

  4. W.T. Hao, J.L. Zhang, Y.Q. Tan, W.B. Su, J. Am. Ceram. Soc. 92, 2937 (2009)

    Article  Google Scholar 

  5. J.J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardly, Phys. Rev. B 70, 144106 (2004)

    Article  Google Scholar 

  6. J.J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardly, J. Appl. Phys. 98, 093703 (2005)

    Article  Google Scholar 

  7. M.C. Ferrarelli, T.B. Adams, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 89, 212904 (2006)

    Article  Google Scholar 

  8. H.M. Ren, P.F. Liang, Z.P. Yang, Mater. Res. Bull. 45, 1608 (2010)

    Article  Google Scholar 

  9. Z.P. Yang, H.M. Ren, X.L. Chao, P.F. Liang, Mater. Res. Bull. 47, 1273 (2012)

    Article  Google Scholar 

  10. L.H. Yang, X.L. Chao, P.F. Liang, L.L. Wei, Z.P. Yang, Mater. Res. Bull. 64, 216 (2015)

    Article  Google Scholar 

  11. W.Q. Ni, X.H. Zheng, J.C. Yu, J. Mater. Sci. 42, 1037 (2007)

    Article  Google Scholar 

  12. R. Tripathi, A. Kumar, C. Bharti, T.P. Sinha, Curr. Appl. Phys. 10, 676 (2010)

    Article  Google Scholar 

  13. M. Li, A. Feteria, D.C. Sinclair, J. Appl. Phys. 105, 114109 (2009)

    Article  Google Scholar 

  14. Y.H. Lin, J.N. Cai, M. Li, C.W. Nan, J.L. He, J. Appl. Phys. 103, 074111 (2008)

    Article  Google Scholar 

  15. P.K. Grubbs, E.L. Venturini, P.G. Clem, J.J. Richardson, B.A. Tuttle, G.A. Samara, Phys. Rev. B 72, 104111 (2005)

    Article  Google Scholar 

  16. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  17. J.L. Zhang, P. Zheng, C.L. Wang, M.L. Zhao, J.C. Li, J.F. Wang, Appl. Phys. Lett. 87, 142901 (2005)

    Article  Google Scholar 

  18. S. Sarkar, P.K. Jana, B.K. Chaudhuri, Appl. Phys. Lett. 92, 022905 (2008)

    Article  Google Scholar 

  19. O. Bidault, M. Maglione, M. Actis, M. Kchikech, B. Salce, Phys. Rev. B 52, 4191 (1995)

    Article  Google Scholar 

  20. P. Thongbai, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 432 (2012)

    Article  Google Scholar 

  21. T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006)

    Article  Google Scholar 

  22. B.S. Prakash, K.B.R. Varma, J. Mater. Sci. Mater. Electron. 17, 899 (2006)

    Article  Google Scholar 

  23. J.Y. Li, X.T. Zhao, F. Gu, S.T. Li, Appl. Phys. Lett. 100, 202905 (2012)

    Article  Google Scholar 

  24. Y.Y. Li, P.F. Liang, X.L. Chao, Z.P. Yang, Ceram. Int. 39, 7879 (2013)

    Article  Google Scholar 

  25. J.Y. Li, X.T. Zhao, S.T. Li, M.A. Alim, J. Appl. Phys. 108, 104104 (2010)

    Article  Google Scholar 

  26. C.C. Wang, L.W. Zhang, Appl. Phys. Lett. 88, 042906 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (NSFC) (Grant Nos. 51172136, 21401123), the Fundamental Research Funds for the Central Universities (Program Nos. GK201403006, GK201402061, GK201301002, GK201101003, GK201101004), the Science and Technology Program of Shaanxi Province (Grant No. 2013K09-26), Scientific and Technology Research Project in Xi’an [Program No. CXY1342(4)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zupei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Chao, X., Wei, L. et al. Dielectric responses of Na0.65Bi0.45Cu3Ti4O12 ceramics based on the composition design of changing the Na/Bi ratio. J Mater Sci: Mater Electron 27, 2221–2227 (2016). https://doi.org/10.1007/s10854-015-4014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4014-z

Keywords

Navigation