Skip to main content
Log in

Synthesis and dielectric properties of Na0.5Bi0.5Cu3Ti4O12 ceramic by molten salt method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Na0.5Bi0.5Cu3Ti4O12 (NBCTO) powder was prepared by molten salt method at 700, 750, 800, and 850 °C in NaCl–KCl flux salts, respectively. X-ray diffraction data revealed that the main NBCTO phase of powder was synthesized at a low temperature of 700 °C for 2 h in NaCl–KCl flux, which was reduced by about 250 °C compared with the conventional solid-state reaction method. The evolution of the microstructure was observed by scanning electron microscopy, and the dielectric properties of NBCTO ceramics affected by sintering temperature and sintering time were studied in detail in this paper. The complex impedance plots were also employed to analyze the dielectric properties of NBCTO ceramics. The average grain size of the sintered ceramic increased with the increase in sintering temperature, which lead to the increased dielectric constant of the NBCTO ceramic, whereas the sintering time has affected the dielectric constant slightly. A high dielectric constant of more than 104 and a low loss tangent (tanδ) of 0.06 (at 10 kHz) were obtained for the NBCTO ceramic sintered at 1040 °C for 12 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  ADS  Google Scholar 

  2. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000)

    Article  ADS  Google Scholar 

  3. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  ADS  Google Scholar 

  4. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  5. T.T. Fang, H.K. Shiau, J. Am. Ceram. Soc. 87, 2072 (2004)

    Article  Google Scholar 

  6. T.T. Fang, C.P. Liu, Chem. Mater. 17, 5167 (2005)

    Article  ADS  Google Scholar 

  7. L. Ni, X.M. Chen, X.Q. Liu, R.Z. Hou, Solid State Commun. 139, 45 (2006)

    Article  ADS  Google Scholar 

  8. L. Marchin, S. Guillemet-Fritsch, B. Durand, J. Am. Ceram. Soc. 91, 485 (2008)

    Article  Google Scholar 

  9. B.K. Kim, H.S. Lee, J.W. Lee, S.E. Lee, Y.S. Cho, J. Am. Ceram. Soc. 93, 2419 (2010)

    Article  Google Scholar 

  10. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokomy, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313 (2012)

    Article  Google Scholar 

  11. H.A. Ardakani, M. Alizadeh, R. Amini, M.R. Ghazanfari, Ceram. Int. 38, 4217 (2012)

    Article  Google Scholar 

  12. Q. Zheng, H.Q. Fan, C.B. Long, J. Alloys Compd. 511, 90 (2012)

    Article  Google Scholar 

  13. R.N.P. Choudhary, U. Bhunia, J. Mater. Sci. 37, 5177 (2002)

    Article  ADS  Google Scholar 

  14. J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, A.W. Sleight, Chem. Mater. 16, 5223 (2004)

    Article  Google Scholar 

  15. W.T. Hao, J.L. Zhang, Y.Q. Tan, W.B. Su, J. Am. Ceram. Soc. 92, 2937 (2009)

    Article  Google Scholar 

  16. J.J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardly, Phys. Rev. B 70, 144106 (2004)

    Article  ADS  Google Scholar 

  17. D. Szwagierczak, J. Electroceram. 23, 56 (2009)

    Article  Google Scholar 

  18. B.S. Prakash, K.B.R. Varma, Phys. B 382, 312 (2006)

    Article  ADS  Google Scholar 

  19. J.J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardly, J. Appl. Phys. 98, 093703 (2005)

    Article  ADS  Google Scholar 

  20. P. Thongbai, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 432 (2012)

    Article  Google Scholar 

  21. M.C. Ferrarelli, T.B. Adams, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 89, 212904 (2006)

    Article  ADS  Google Scholar 

  22. H.M. Ren, P.F. Liang, Z.P. Yang, Mater. Res. Bull. 45, 1608 (2010)

    Article  Google Scholar 

  23. Z.P. Yang, H.M. Ren, X.L. Chao, P.F. Liang, Mater. Res. Bull. 47, 1273 (2012)

    Article  Google Scholar 

  24. Y. Qiu, Z.Z. Ma, S.X. Huo, H.N. Duan, Z.M. Tian, S.L. Yuan, L. Chen, J. Mater. Sci. Mater. Electron. 23, 1587 (2012)

    Article  Google Scholar 

  25. Y. Qiu, S.L. Yuan, Z.M. Tian, L. Chen, C.H. Wang, H.N. Duan, K. Guo, Appl. Phys. A 107, 379 (2012)

    Article  ADS  Google Scholar 

  26. Y.L. Su, J. Song, R. Liu, H. Huang, J. Electroceram. 30, 166 (2013)

    Article  Google Scholar 

  27. B. Xu, J. Zhang, Z.M. Tian, S.L. Yuan, Mater. Lett. 75, 87 (2012)

    Article  Google Scholar 

  28. W. Tuichai, P. Thongbai, V. Amornkitbamrung, T. Yamwong, S. Maensiri, Microelectron. Eng. 126, 118 (2014)

    Article  Google Scholar 

  29. W. Tuichai, S. Danwittayakul, T. Yamwong, P. Thongbai, J. Sol–Gel. Sci. Technol. 76, 630 (2015)

    Article  Google Scholar 

  30. X.H. Sun, C.C. Wang, G.J. Wang, C.M. Lei, T. Li, L.N. Liu, J. Am. Ceram. Soc. 96, 1497 (2013)

    Article  Google Scholar 

  31. R.H. Arendt, J. Solid State Chem. 8, 339 (1973)

    Article  ADS  Google Scholar 

  32. R.H. Arendt, J.H. Rosolowski, J.W. Szymaszek, Mater. Res. Bull. 14, 703 (1979)

    Article  Google Scholar 

  33. K.H. Yoon, Y.S. Cho, D.H. Kang, J. Mater. Sci. 33, 2977 (1998)

    Article  ADS  Google Scholar 

  34. S.W. Zhang, D.D. Jayaseelan, G. Bhattacharya, W.E. Lee, J. Am. Ceram. Soc. 89, 1724 (2006)

    Article  Google Scholar 

  35. H. Hao, H.X. Liu, Y. Liu, M.H. Cao, S.X. Ouyang, J. Am. Ceram. Soc. 90, 1659 (2007)

    Article  Google Scholar 

  36. Z.S. Li, S.W. Zhang, W.E. Lee, J. Eur. Ceram. Soc. 27, 3201 (2007)

    Article  Google Scholar 

  37. H.L. Li, Z.N. Du, G.L. Wang, Y.C. Zhang, Mater. Lett. 64, 431 (2010)

    Article  Google Scholar 

  38. K.P. Chen, X.W. Zhang, Ceram. Int. 36, 1523 (2010)

    Article  Google Scholar 

  39. B.R. Li, X.T. Liu, P.L. Chen, Y.S. Zheng, Ceram. Int. 38, 105 (2012)

    Article  Google Scholar 

  40. Y.L. Su, C. Sun, W.Q. Zhang, H. Huang, J. Mater. Sci. 48, 8147 (2013)

    Article  Google Scholar 

  41. M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)

    Article  ADS  Google Scholar 

  42. T. Li, R.Z. Xue, J.H. Hao, Y.C. Xue, Z.P. Chen, J. Alloys Compd. 509, 1025 (2011)

    Article  Google Scholar 

  43. S. Guillemet-Fritsch, T. Lebey, M. Boulos, B. Durand, J. Eur. Ceram. Soc. 26, 1245 (2006)

    Article  Google Scholar 

  44. J.B. Wu, C.W. Nan, Y.H. Lin, Y. Deng, Phys. Rev. Lett. 89, 217601 (2002)

    Article  ADS  Google Scholar 

  45. J.J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. 98, 093703 (2005)

    Article  ADS  Google Scholar 

  46. K. Meeporn, T. Yamwong, S. Pinitsoontorn, V. Amornkitbamrung, P. Thongbai, Ceram. Int. 40, 15897 (2014)

    Article  Google Scholar 

  47. H.T. Zhang, X.Y. Deng, T. Li, W. Zhang, R.K. Chen, W.W. Tian, J.B. Li, X.H. Wang, L.T. Li, Appl. Phys. Lett. 97, 162913 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Natural Science Foundation of Jiangsu Province (BK20130314) and Natural Science Foundation of Jiangsu Higher Education Institutes (13KJB430021). It was also supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Wang, Y. Synthesis and dielectric properties of Na0.5Bi0.5Cu3Ti4O12 ceramic by molten salt method. Appl. Phys. A 122, 249 (2016). https://doi.org/10.1007/s00339-016-9838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9838-8

Keywords

Navigation