Skip to main content
Log in

Effects of Zn2+ doping content on the structure and dielectric tunability of non-stoichiometric [(Na0.7K0.2Li0.1)0.45Bi0.55]TiO3+δ thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Zn2+ doped non-stoichiometric [(Na0.7K0.2Li0.1)0.45Bi0.55](Ti1−x Zn x )O3+δ (NKLBTZn x , x = 0–4 at.%) thin films were deposited on fluorine-doped tin oxide/glass substrates via a metal organic decomposition method. The effect of Zn2+ doping content on microstructure, insulating characteristic and dielectric properties were mainly investigated. All the thin films exhibit similar single perovskite structures without detectable secondary phase and the grain size gradually decreases with the increase of Zn2+ doping content. Compared with other films, NKLBTZn0.01 thin film shows enhanced insulating characteristic with lower leakage current, and improved dielectric properties with a relatively higher dielectric tunability and lower dielectric loss. Moreover, with the increasing of electric field or decreasing of measuring frequency, the dielectric tunability is progressively increased. The tunability and figure of merit for the NKLBTZn0.01 thin film at 300 kV/cm and 1 kHz are 40.1 % and 7.0, respectively. These findings suggest that NKLBTZn thin film has potential applications in microwave dielectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.F. Ning, L.X. Li, X.Y. Zhang, M.J. Wang, W.S. Xia, Mater. Lett. 87, 5–8 (2012)

    Article  Google Scholar 

  2. H.R. Liu, V. Avrutin, C.Y. Zhu, Ü. Özgür, J. Yang, C.Z. Lu, H. Morkoc, J. Appl. Phys. 113, 044108 (2013)

    Article  Google Scholar 

  3. X. Hao, J. Zhai, X. Yao, J. Am. Ceram. Soc. 91, 4112–4114 (2008)

    Article  Google Scholar 

  4. M. Iwata, K. Tanaka, M. Maeda, Y. Ishibashi, Jpn. J. Appl. Phys. 53, 038004 (2014)

    Article  Google Scholar 

  5. Y. Wang, Y.B. Wang, W. Rao, M. Wang, G.X. Li, Y.B. Li, J.X. Gao, W.L. Zhou, J. Yu, J. Mater. Sci.: Mater. Electron. 23, 1064–1071 (2012)

    Google Scholar 

  6. D.M. Lin, K.W. Kwok, J. Mater. Sci.: Mater. Electron. 21, 1060–1065 (2010)

    Google Scholar 

  7. X. Wang, P.L. Wang, G.D. Hu, J. Yan, X.M. Chen, Y.X. Ding, W.B. Wu, S.H. Fan, J. Mater. Sci.: Mater. Electron. 19, 1031–1034 (2008)

    Google Scholar 

  8. M. Zannen, H. Khemakhem, A. Kabadou, M. Es-Souni, J. Alloys Compd. 555, 56–61 (2013)

    Article  Google Scholar 

  9. C.H. Yang, W.B. Wu, F. Yang, H.T. Wu, X.Y. Zhang, Mater. Lett. 66, 86–88 (2012)

    Article  Google Scholar 

  10. C.C. Jin, F.F. Wang, Q.R. Yao, Y.X. Tang, T. Wang, W.Z. Shi, J. Alloys Compd. 553, 142–145 (2013)

    Article  Google Scholar 

  11. Š. Kunej, A. Veber, D. Suvorov, J. Am. Ceram. Soc. 96, 442–446 (2013)

    Google Scholar 

  12. D.A. Sanjosé, R. Jiménez, I. Bretos, M.L. Calzada, J. Am. Ceram. Soc. 92, 2218–2225 (2009)

    Article  Google Scholar 

  13. Y.Y. Wu, X.H. Wang, C.F. Zhong, L.T. Li, J. Am. Ceram. Soc. 94, 3877–3882 (2011)

    Article  Google Scholar 

  14. D.Y. Wang, N.Y. Chan, S. Li, S.H. Choy, H.Y. Tian, H.L.W. Chan, Appl. Phys. Lett. 97, 212901 (2010)

    Article  Google Scholar 

  15. C.H. Yang, H.T. Sui, H.L. Yang, X.X. Li, Mater. Lett. 102–103, 109–111 (2013)

    Article  Google Scholar 

  16. G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Appl. Phys. Lett. 92, 192905 (2008)

    Article  Google Scholar 

  17. M.C. Chiu, H.C. Yao, C.J. Huang, F.S. Shieu, J. Appl. Phys. 102, 014110 (2007)

    Article  Google Scholar 

  18. H.T. Sui, C.H. Yang, F.J. Geng, C. Feng, Mater. Lett. 139, 284–287 (2015)

    Article  Google Scholar 

  19. J.B. Xu, J.W. Zhai, X. Yao, J.Q. Xue, Z.M. Huang, J. Sol–Gel Sci. Technol. 42, 209–212 (2007)

    Article  Google Scholar 

  20. X.Y. Lei, D. Rémiens, N. Sama, Y. Chen, C. Mao, X.L. Dong, G.S. Wang, J. Cryst. Growth 347, 15–18 (2012)

    Article  Google Scholar 

  21. K.-T. Kim, C.-I. Kim, Thin Solid Films 420–421, 544–547 (2002)

    Article  Google Scholar 

  22. J.B. Xu, Y. Liu, R. Withers, F. Brink, H. Yang, M. Wang, J. Appl. Phys. 104, 116101 (2008)

    Article  Google Scholar 

  23. H.R. Liu, Z.L. Liu, K.L. Yao, J. Sol–Gel Sci. Technol. 41, 123–128 (2007)

    Article  Google Scholar 

  24. Y.J. Ren, X.H. Zhu, C.Y. Zhang, J.L. Zhu, J.G. Zhu, D.Q. Xiao, Ceram. Int. 40, 2489–2493 (2014)

    Article  Google Scholar 

  25. M. Cheng, G.Q. Tan, X. Xue, A. Xia, H.J. Ren, Phys. B Condens. Matter 407, 3360–3363 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51002064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, F.J., Yang, C.H., Lv, P.P. et al. Effects of Zn2+ doping content on the structure and dielectric tunability of non-stoichiometric [(Na0.7K0.2Li0.1)0.45Bi0.55]TiO3+δ thin film. J Mater Sci: Mater Electron 27, 2195–2200 (2016). https://doi.org/10.1007/s10854-015-4010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4010-3

Keywords

Navigation