Skip to main content
Log in

Superior dielectric tunability of high-valence W6+-doped Na0.5Bi0.5TiO3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Na0.5Bi0.5TiO3 (NBT) and Na0.5Bi0.5Ti1−x W x O3+δ (NBTW x , x = 0.005, 0.010, 0.020) thin films were successfully fabricated on indium tin oxide (ITO)/glass substrates via a modified sol–gel method annealed at 600 °C. The effects of W6+ doping content on crystalline structure, surface morphology and electrical properties were studied in detail. All the films can be crystallized into phase-pure perovskite structures and possess smooth surfaces without any cracks. Compared with the NBT, each NBTW x thin film exhibits an obvious decrease of leakage current density and enhanced dielectric properties. A large dielectric tunability (62 %) which is comparable to that of lead-based ones (such as PZT) is achieved in NBTW0.010 sample at the frequency of 100 kHz, which can be attributed to the inhibition effect of the appropriate concentration of W6+ on the formation of oxygen vacancies. These results suggest that high-valence-ion substitution of W6+ ion for Ti4+ ion can significantly optimize the electrical properties of NBT-based thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.F. Ning, L.X. Li, X.Y. Zhang, M.J. Wang, W.S. Xia, Mater. Lett. 87, 5 (2012)

    Article  Google Scholar 

  2. X.T. Li, P.Y. Du, C.L. Mak, K.H. Wong, Appl. Phys. Lett. 90, 262906 (2007)

    Article  Google Scholar 

  3. X.H. Hao, J.W. Zhai, J. Zhou, J.C. Yang, X.W. Song, S.L. An, J. Cryst. Growth 312, 667 (2010)

    Article  Google Scholar 

  4. Y.L. Kuo, J.M. Wu, Appl. Phys. Lett. 89, 132911 (2006)

    Article  Google Scholar 

  5. T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25, 2693 (2005)

    Article  Google Scholar 

  6. F. Levassort, P. Tran-Huu-Hue, E. Ringaard, M. Lethiecq, J. Eur. Ceram. Soc. 21, 1361 (2001)

    Article  Google Scholar 

  7. J.B. Xu, Y. Liu, R.L. Withers, F. Brink, H. Yang, M. Wang, J. Appl. Phys. 104, 116101 (2008)

    Article  Google Scholar 

  8. S.C. Zhao, G.R. Li, A.L. Ding, T.B. Wang, Q.R. Yin, J. Phys. D Appl. Phys. 39, 2277 (2006)

    Article  Google Scholar 

  9. Z.S. Xu, X.H. Hao, S.L. An, J. Mater. Sci.: Mater. Electron. 26, 4318 (2015)

    Google Scholar 

  10. M.M. Hejazi, E. Taghaddos, A. Safari, J. Mater. Sci. 48, 3511 (2013)

    Article  Google Scholar 

  11. X.L. Fang, B. Shen, J.W. Zhai, X. Yao, Ceram. Int. 38S, S83 (2012)

    Article  Google Scholar 

  12. T. Šetinc, M. Spreitzer, Š. Kunej, J. Kova, D. Suvorov, J. Am. Ceram. Soc. 96, 3511 (2013)

    Article  Google Scholar 

  13. C.H. Yang, G.D. Hu, W.B. Wu, H.T. Wu, F. Yang, Appl. Phys. Lett. 100, 022909 (2012)

    Article  Google Scholar 

  14. Y.Y. Wu, X.H. Wang, C.F. Zhong, L.T. Li, J. Am. Ceram. Soc. 94, 3877 (2011)

    Article  Google Scholar 

  15. X. Wang, G.D. Hu, L. Cheng, C.H. Yang, W.B. Wu, Appl. Phys. Lett. 99, 262901 (2011)

    Article  Google Scholar 

  16. M. Li, L.H. Li, J.D. Zang, D.C. Sinclair, Appl. Phys. Lett. 106, 102904 (2015)

    Article  Google Scholar 

  17. L. Cheng, G.D. Hu, B. Jiang, C.H. Yang, W.B. Wu, S.H. Fan, Appl. Phys. Express 3, 101501 (2010)

    Article  Google Scholar 

  18. W.J. Kim, W. Chang, S.B. Qadri, J.M. Pond, S.W. Kirchoefer, D.B. Chrisey, J.S. Horwitz, Appl. Phys. Lett. 76, 1185 (2000)

    Article  Google Scholar 

  19. J.B. Xu, J.W. Zhai, X. Yao, J.Q. Xue, Z.M. Huang, J. Sol–Gel Sci. Technol. 42, 209 (2007)

    Article  Google Scholar 

  20. M.C. Chiu, H.C. Yao, C.J. Huang, F.S. Shieu, J. Appl. Phys. 102, 014110 (2007)

    Article  Google Scholar 

  21. H.T. Sui, C.H. Yang, F.J. Geng, C. Feng, Mater. Lett. 139, 284 (2015)

    Article  Google Scholar 

  22. C.C. Diao, C.F. Yang, J.J. Lin, J. Nanosci. Nanotechnol. 11, 10562 (2011)

    Article  Google Scholar 

  23. X.D. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005)

    Article  Google Scholar 

  24. J. Yan, G.D. Hu, X.M. Chen, W.B. Wu, C.H. Yang, J. Appl. Phys. 104, 076103 (2008)

    Article  Google Scholar 

  25. H.Y. Zhang, L. Chen, B. Jiang, W. Sun, J.J. Liu, G.D. Hu, J. Mater. Sci.: Mater. Electron. 23, 1864 (2012)

    Google Scholar 

  26. Y.J. Ren, X.H. Zhu, C.Y. Zhang, J.L. Zhu, J.G. Zhu, D.Q. Xiao, Ceram. Int. 40, 2489 (2014)

    Article  Google Scholar 

  27. M. Cheng, G.Q. Tan, X. Xue, A. Xia, H.J. Ren, Physica B Condens. Matter 407, 3360 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51002064) and the Scientific Research Foundation of University of Jinan (XKY1505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Yang, C., Lv, P. et al. Superior dielectric tunability of high-valence W6+-doped Na0.5Bi0.5TiO3 thin films. J Mater Sci: Mater Electron 28, 1433–1437 (2017). https://doi.org/10.1007/s10854-016-5678-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5678-8

Keywords

Navigation