Skip to main content
Log in

Low temperature In–Bi–Zn solder alloy on copper substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, characteristic of In–32.7Bi–0.5Zn lead-free solder system have been studied. DSC shows that, In–32.7Bi–0.5Zn system alloy give low melting temperature at 72.30 °C. Lowest melting temperature ensures that the solder melts, forms a joint with the substrates, and re-solidifies within the shortest possible process time. Further, the wettability between molten solder and copper substrate was measured at different reflow temperature. The contact angle for In–32.7Bi–0.5Zn solder alloys were decreasing 30.76° to 24.5° as the temperature increased from 100 to 140 °C. A significant increment of contact angle for In–32.7Bi–0.5Zn at 140 °C. The result of spreading area is inversed with the contact angle. Energy-dispersive X-ray analysis indicated two layer of intermetallic compound between the solder and the substrate; Cu5Zn8 and Cu11In9 compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Schwarzer, A.D Bono, P. Peduzzi, G. Giuliani, S. Kluser, E-waste, the hidden side of IT equipment’s manufacturing and use, in United Nations Environment Programme (UNEP) Early Warning on Emerging Environmental Threats No. 5, publisher, (2005). Accessed on 17 Nov 2009. (http://www.grid.unep.ch/product/publication/download/ew_ewaste.en.pdf)

  2. O. Tsydenova, M. Bengtsson, Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manage. 31, 45–58 (2011)

    Article  Google Scholar 

  3. J. Saphores, O.A. Ogunseitan, A.A. Shapiro, Willingness to engage in a pro-environmental behavior: an analysis of e-waste recycling based on a national survey of U.S. households. Resour. Conserv. Recycl. 60, 49–63 (2009)

    Article  Google Scholar 

  4. W.H. Lin, A.T. Wu, S.Z. Lin, T.H. Chuang, K.N. Tu, Electromigration in the flip chip solader joint of Sn–8Zn–3Bi on copper pads. J. Electron. Mater. 36, 753–759 (2007)

    Article  Google Scholar 

  5. W.K. Liou, Y.W. Yen, K.D. Chen, Interfacial reactions between Sn–9Zn+ Cu lead-free solders and the Au substrate. J. Alloys Compd. 479, 225–229 (2009)

    Article  Google Scholar 

  6. J. Wang, L.G. Zhang, H.S. Liu, L.B. Liu, Z.P. Jin, Interfacial reaction between Sn–Ag alloys and Ni substrate. J. Alloys Compd. 455, 159–163 (2008)

    Article  Google Scholar 

  7. J. Yoon, B. Noh, B. Kim, C. Shur, S. Jung, Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints. J. Alloys Compd. 486, 142–147 (2009)

    Article  Google Scholar 

  8. K. Suganuma, Lead-Free Soldering in Electronics: Science, Technology and Environmental Impact (Marcel Dekker, New York, 2004), pp. 20–150

    Google Scholar 

  9. T.C. Chang, M.H. Hon, M.C. Wang, Solid-state reactions at the Sn–9Zn–xAg lead-free solders Cu interface. Electrochem. Solid State Lett. 6, C82–C84 (2003)

    Article  Google Scholar 

  10. E.M.N. Ervina, M.N. Nurulakmal, K.Y. Cheong, A. Tadashi, B.I. Ahmad, H. Zuhailawati, Wettability and strength of In–Bi–Sn lead-free solder alloy on copper substrate. J. Alloys Compd. 507, 290–296 (2010)

    Article  Google Scholar 

  11. J.Y. Park, C.U. Kim, T. Carper, V. Puliganda, Phase equilibria studies of Sn–Ag–Cu eutectic solder using differential cooling of Sn–3.8Ag–0.7Cu Alloys. J. Electron. Mater. 32(11), 1297–1302 (2003)

    Article  Google Scholar 

  12. L. Zhang, Z. Yuan, Y. Zhan, C. Wang, B. Xu, Spreading kinetics of a Sn–30Bi–0.5Cu alloy on a Cu substrate. Chin. Sci. Bull. 57, 686–697 (2012)

    Google Scholar 

  13. M.F. Arenas, V.L. Acoff, Contact angle measurements of Sn–Ag and Sn–Cu lead-free solders on copper substrates. J. Electron. Mater. 33, 1452–1458 (2004)

    Article  Google Scholar 

  14. R. Mayappan, A.B. Ismail, Z.A. Ahmad, T. Ariga, L.B. Hussain, The effect of crosshead speed on the joint strength between Sn–Zn–Bi lead-free solders and Cu substrate. J. Alloys Compd. 436, 112–117 (2006)

    Article  Google Scholar 

  15. C.M.L. Wu, C.M.T. Law, D.Q. Yu, L. Wang, The wettability and microstructure of Sn–Zn–Re alloys. J. Electron. Mater. 32, 63–69 (2003)

    Article  Google Scholar 

  16. F. Sun, Y. Liu, J. Wang Improving the solderability and electromigration behavior of Low-Ag SnAgCu soldering, in Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2011 12th International Conference, (2011), pp. 1–5

  17. X. Wang, Y.C. Liu, Z.M. Gao, Effect of Bi content on spalling behavior of Sn–Bi–Zn–Ag/Cu interface. J. Mater. Sci. Mater. Electron. 22, 14–19 (2011)

    Article  Google Scholar 

  18. Y. Liu, F.L. Sun, T.L. Yan, W.G. Hu, Effects of Bi and Ni addition on wettability and melting point of Sn–0.3 Ag–0.7 Cu Low-Ag Pb-free solder. Electron. Packag. Technol. High Density Packag. 2008, 1–4 (2008)

    Google Scholar 

  19. H.R. Kotadia, M.P. Clode, M.A. Green, S.H. Mannan, Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni–P substrates. J. Alloys Compd. 511, 176–188 (2012)

    Article  Google Scholar 

  20. S. Yagi, T. Ichitsubo, E. Matsubara, M. Yamaguchi, H. Kimura, K. Sasamori, Interfacial reaction of gas-atomized Sn–Zn solder containing Ni and Cu additives. J. Alloys Compd. 484, 184–189 (2009)

    Article  Google Scholar 

  21. R. Mayappan, Z.A. Ahmad, Effect of Bi addition on the activation energy for the growth of Cu 5 Zn 8 intermetallic in the Sn–Zn lead-free solder. Intermetallics 18, 730–735 (2010)

    Article  Google Scholar 

  22. J.K. Kim, J. Yu, J.H. Lee, T.Y. Lee, The effects of electroplating parameters on the composition and morphology of Sn–Ag solder. J. Electron. Mater. 33, 1459–1464 (2004)

    Article  Google Scholar 

  23. B. Su, M. Gershovish, Y.C. Lee Gas flow effects on precision solder self-alignment, in Electronic Components and Technology Conference (1997), pp. 797–803

  24. T.-C. Chang, M.-H. Hon, M.-C. Wong, Intermetallic compounds formed at the interface between Cu substrate and an Sn–9Zn–0.5Ag lead-free solder. Mater. Res. Bull. 38, 909–916 (2003)

    Article  Google Scholar 

  25. X. Zhang, H. Matsuura, F. Tsukihashi, Z. Yuan, Wettability of SnZn, SnAgCu and SnBiCu alloys on copper substrates. Mater. Trans. 53(5), 926–931 (2012)

    Article  Google Scholar 

  26. D.Q. Yu, C.M. Wu, C.M.T. Law, L. Wang, J.K. Lai, Intermetallic compounds growth between Sn–3.5Ag lead-free solder and Cu substrate by dipping method. J. Alloys Compd. 392, 192–199 (2005)

    Article  Google Scholar 

  27. P.R. Subramanian, D.E. Laughlin, Bull. Alloy Phase Diagr. 10, 554 (1990)

    Article  Google Scholar 

  28. H. Okamoto, Binary Alloy Phase Diagrams, ASM Alloy Phase Diagrams Center (Bismuth-Indium) (1990), pp. 748–751

  29. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Ohio, 1973), pp. 115–822

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ervina Efzan Mhd Noor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noor, E.E.M., Zuhailawati, H. & Radzali, O. Low temperature In–Bi–Zn solder alloy on copper substrate. J Mater Sci: Mater Electron 27, 1408–1415 (2016). https://doi.org/10.1007/s10854-015-3904-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3904-4

Keywords

Navigation