Skip to main content
Log in

Phase constitution, microstructures and microwave dielectric properties of CaxZn1−xZr0.8Sn0.2Nb2O8 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The phase constitution, microstructures and microwave dielectric properties of CaxZn1−xZr0.8Sn0.2Nb2O8 (x = 0.00, 0.05, 0.10, 0.15) ceramics prepared via a solid-state reaction method were reported for the first time. The X-ray diffraction patterns of CaxZn1−xZr0.8Sn0.2Nb2O8 ceramics showed the monoclinic structure of ZnZrNb2O8 and the second phase columbite CaNb2O6 were obtained. The microwave dielectric properties of the CaxZn1−xZr0.8Sn0.2Nb2O8 ceramics were strongly affected by the change of crystal structure and the content of second phase. With the increasing Ca2+ content, the dielectric constant (ε r ) and the Qf value decreased and the temperature coefficient of resonant frequency (τ f ) moved to the positive direction. The typical values of ε r  = 26.64, Qf = 61,350 GHz, τ f  = −21.43 × 10−6/°C were obtained for CaxZn1−xZr0.8Sn0.2Nb2O8 (x = 0.15) specimens sintered at 1275 °C for 6 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Jantunen, R. Rautioaho, A. Unsimaki, S. Leppavuori, J. Eur. Ceram. Soc. 20, 2331–2336 (2000)

    Article  Google Scholar 

  2. I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    Google Scholar 

  3. Y.C. Lee, C.T. Lee, S. Wang, F.S. Shieu, Mater. Chem. Phys. 100, 355–360 (2006)

    Article  Google Scholar 

  4. S. Parida, S.K. Rout, N. Gupta, V.R. Gupta, J. Alloys Compd. 546, 216–223 (2013)

    Article  Google Scholar 

  5. L. Fang, C. Su, H. Zhou, Z. Wei, H. Zhang, J. Am. Ceram. Soc. 96, 668–690 (2013)

    Google Scholar 

  6. T.K. Chen, W.B. Ma, R. Li, J. Mater. Sci. Mater. Eletron. 6, 2494–2500 (2014)

    Article  Google Scholar 

  7. Q.W. Liao, L.X. Li, X. Ren, X.X. Yu, D. Guo, M.J. Wang, J. Am. Ceram. Soc. 95, 3363–3365 (2012)

    Article  Google Scholar 

  8. S.D. Ramarao, V.R.K. Murthy, Scr. Mater. 69, 274–277 (2013)

    Article  Google Scholar 

  9. C.L. Huang, S.H. Huang, R.Z. Lee, Key Eng. Mater. 547, 49–55 (2013)

    Article  Google Scholar 

  10. D. Zhou, W.B. Li, H.H. Xi, L.X. Pang, G.S. Pang, J. Mater. Chem. C 3, 2582–2588 (2015)

    Article  Google Scholar 

  11. Y. Wu, D. Zhou, J. Guo, L.X. Pang, H. Wang, X. Yao, Mater. Lett. 65, 2680–2682 (2011)

    Article  Google Scholar 

  12. L.X. Li, M.M. Zhang, Q.W. Liao, W.S. Xia, X. Ding, J. Alloys Compd. 531, 18–22 (2012)

    Article  Google Scholar 

  13. S. Keshri, S.S. Rajput, Ceram. Int. 40, 4257–4266 (2014)

    Article  Google Scholar 

  14. W.E. Courtney, IEEE Trans. Microw. Theory Technol. 18, 476–485 (1970)

    Article  Google Scholar 

  15. D. Kajfez, S. Chebolu, M.R. Abdul-Gaffoor, A.A. Kishk, IEEE Trans. Microw. Theory Technol. 47, 367–371 (1999)

    Article  Google Scholar 

  16. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. 26, 1046–1048 (1970)

    Article  Google Scholar 

  17. R.D. Shannon, G.R. Rossman, Am. Miner. 77, 94–100 (1992)

    Google Scholar 

  18. E.S. Kim, S.H. Yoon, J. Ceram. Soc. Jpn. 112, 1645–1649 (2004)

    Google Scholar 

  19. E.S. Kim, W. Choi, J. Eur. Ceram. Soc. 26, 1761–1766 (2006)

    Article  Google Scholar 

  20. H.J. Lee, K.S. Hong, S.J. Kim, Mater. Res. Bull. 32, 847–855 (1997)

    Article  Google Scholar 

  21. J. Petzelt, J. Schwarzbach, B.P. Gorshunnov, Ferroelectrics 93, 77–85 (1989)

    Article  Google Scholar 

  22. A.J. Bosman, E.E. Havinga, Phys. Rev. 129, 1593–1600 (1963)

    Article  Google Scholar 

  23. C.F. Tseng, J. Eur. Ceram. Soc. 34, 3641–3648 (2014)

    Article  Google Scholar 

  24. C.L. Huang, S.S. Liu, Jpn. J. Appl. Phys. 46, 283–285 (2007)

    Article  Google Scholar 

  25. D.H. Kim, C. An, Y.S. Lee, K.S. Bang, J.C. Kim, H.K. Lee, J. Mater. Sci. Lett. 22, 569–571 (2003)

    Article  Google Scholar 

  26. Y. Cheng, R.Z. Zuo, Y. Lv, Ceram. Int. 39, 8681–8685 (2013)

    Article  Google Scholar 

  27. L.X. Li, H. Sun, H.C. Cai, X.S. Lv, J. Alloys Compd. 639, 516–519 (2015)

    Article  Google Scholar 

  28. Ceramic dielectric capacitors classes I, II, III and IV—part I: characteristics and requirements. EIA-198-1-F, 2002

Download references

Acknowledgments

This work was supported by Program for New Century Excellent Talents in University (NCET) and 863 Program (2007AA03Z423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxia Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ye, J., Sun, H. et al. Phase constitution, microstructures and microwave dielectric properties of CaxZn1−xZr0.8Sn0.2Nb2O8 ceramics. J Mater Sci: Mater Electron 27, 1232–1238 (2016). https://doi.org/10.1007/s10854-015-3880-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3880-8

Keywords

Navigation