Skip to main content
Log in

Fixed-bed column studies for the removal of anionic dye from aqueous solution using TiO2@glucose carbon composites and bed regeneration study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Glucose carbon with uniform diameter was successfully anchored by TiO2 nanoparticles via a facile low-temperature hydrothermal process independent of surfactants or external forces. The resultant TiO2@glucose carbon composite (TiO2@GCs) was characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The elimination of direct deep blue (DDB) from aqueous solution by adsorption onto TiO2@GCs was investigated in the up-flow fixed-bed columns. The effects of the influent concentration (10–30 mg L−1), flow rate (3–5 mL min−1), bed depth (1.0–2.0 cm) and pH (1.0–9.0) were investigated. Breakthrough time and adsorption capacity of the fixed-bed increased with increasing bed depth, whereas decreased with the increase in initial concentration, bed depth and solution pH values. The experimental data was in good agreement with both Thomas model and Yoon-Nelson model. The employed bed saturated with DDB was readily regenerated through a simple regeneration process with UV irradiation for 1 h. Furthermore, the adsorption–regeneration process was conducted for six cycles and no major decrease of regeneration efficiency was observed for the first three cycles. One possible mechanism for regenerating dye-loaded TiO2@GCs was proposed. The verifying experiment found that hydroxyl radicals and superoxide ions significantly affected the regeneration of employed TiO2@GCs bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.I. Sax, Cancer Causing Chemical, 1st ed., DC 9625000, VNR New York, (1981)

  2. R.M. Mohamed, E.S. Baeissa, Mordenite encapsulated with Pt–TiO2: characterization and applications for photocatalytic degradation of direct blue dye. J. Alloys Compd. 558, 68–72 (2013)

    Article  Google Scholar 

  3. Z. Pei, K. Zhang, Y. Dang, B. Bai, W. Guan, Y. Suo, Adsorption of organic dyes by TiO2@ yeast-carbon composite microspheres and their in situ regeneration evaluation. J. Nanomater. (2014)

  4. W. Konicki, I. Pełech, E. Mijowska, I. Jasińska, Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite: kinetics, equilibrium and thermodynamics. Chem. Eng. J. 210, 87–95 (2012)

    Article  Google Scholar 

  5. S. Hisaindee, M.A. Meetani, M.A. Rauf, Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. TrAC Trend Anal. Chem. 49, 31–44 (2013)

    Article  Google Scholar 

  6. V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chem. Eng. J. 2–3, 354–364 (2009)

    Article  Google Scholar 

  7. S.S. Moghaddam, M.R.A. Moghaddam, M. Arami, Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology. J. Hazard. Mater. 1, 651–657 (2010)

    Article  Google Scholar 

  8. J. Wu, M.A. Eiteman, S.E. Law, Evaluation of membrane filtration and ozonation processes for treatment of reactive-dye wastewater. J. Environ. Eng. 3, 272–277 (1998)

    Article  Google Scholar 

  9. K. Turhan, I. Durukan, S.A. Ozturkcan, Z. Turgut, Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigments 3, 897–901 (2012)

    Article  Google Scholar 

  10. L. Wang, J. Zhang, R. Zhao, C. Li, Y. Li, C. Zhang, Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn: equilibrium, kinetic and thermodynamic studies. Desalination 1, 68–74 (2010)

    Article  Google Scholar 

  11. L. Guo, L. Zhang, J. Zhang, J. Zhou, Q. He, S. Zeng, X. Cui, J. Shi, Hollow mesoporous carbon spheres-an excellent bilirubin adsorbent. Chem. Commun. 40, 6071–6073 (2009)

    Article  Google Scholar 

  12. S. Liu, J. Sun, Z. Huang, Carbon spheres/activated carbon composite materials with high Cr(VI) adsorption capacity prepared by a hydrothermal method. J. Hazard. Mater. 1, 377–383 (2010)

    Article  Google Scholar 

  13. F.L. Wang, L.L. Pang, Y.Y. Jiang, B. Chen, D. Lin, N. Lun, H.L. Zhu, R. Liu, X.L. Meng, Y. Wang, Y.J. Bai, L.W. Yin, Simple synthesis of hollow carbon spheres from glucose. Mater. Lett. 29, 2564–2566 (2009)

    Article  Google Scholar 

  14. N.M. Mahmoodi, Binary catalyst system dye degradation using photocatalysis. Fiber Polym. 2, 273–280 (2014)

    Article  Google Scholar 

  15. W. Jiang, J.A. Joens, D.D. Dionysiou, K.E. O’Shea, Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate. J. Photochem. Photobiol., A 262, 7–13 (2013)

    Article  Google Scholar 

  16. B. Sun, Q.L. Li, W.X. Zhao, H.W. Li, L.J. Wei, P. Chen, White-light-controlled resistance switching in TiO2/a-Fe2O3 composite nanorods array. J. Nanopart. Res. 16, 2389 (2014)

    Article  Google Scholar 

  17. B. Sun, W. Zhao, Y. Liu, P. Chen, White-light-controlled resistive switching and photovoltaic effects in TiO2/ZnO composite nanorods array at room temperature. J. Mater. Sci.: Mater. Electron. 10, 4306–4311 (2014)

    Google Scholar 

  18. L. Chen, B. Bai, Equilibrium, kinetic, thermodynamic, and in situ regeneration studies about methylene blue adsorption by the raspberry-like TiO2@ yeast microspheres. Ind. Eng. Chem. Res. 44, 15568–15577 (2013)

    Article  Google Scholar 

  19. S. Saroj, S.V. Singh, D. Mohan, Removal of Colour (Direct Blue 199) from Carpet Industry Wastewater Using Different Biosorbents (Maize Cob, Citrus Peel and Rice Husk). Arab. J. Sci. Eng. 40, 1553–1564 (2015)

    Article  Google Scholar 

  20. N.K. Amin, Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. J. Hazard. Mater. 1, 52–62 (2009)

    Article  Google Scholar 

  21. B. Sun, W. Zhao, L. Wei, H. Li, P. Chen, Enhanced resistive switching effect upon illumination in self-assembled NiWO4 nano-nests. Chem. Commun. 50, 13142–13145 (2014)

    Article  Google Scholar 

  22. B. Hu, J.F. Wang, J. Zhang, Z.B. Gu, S.T. Zhang, Synthesis, structures and properties of single phase BiFeO3 and Bi2Fe4O9 powders by hydrothermal method. J. Mater. Sci.: Mater. Electron. 9, 6887–6891 (2015)

    Google Scholar 

  23. M. Meng, Y. Feng, M. Zhang, Y. Liu, Y. Ji, J. Wang, Y. Wu, Y. Yan, Highly efficient adsorption of salicylic acid from aqueous solution by wollastonite-based imprinted adsorbent: a fixed-bed column study. Chem. Eng. J. 225, 331–339 (2013)

    Article  Google Scholar 

  24. W. Zhou, Q. Yang, C. Chen, Q. Wu, L. Zhu, Fixed-bed study and modeling of selective phenanthrene removal from surfactant solutions. Colloid Surf. A 470, 100–107 (2015)

    Article  Google Scholar 

  25. D.S. Papita, C. Sagnik, C. Shamik, Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloid Surf. B 92, 262–270 (2012)

    Article  Google Scholar 

  26. J. Cruz-Olivares, C. Pérez-Alonso, C. Barrera-Díaz, F. Ureña-Nuñez, M.C. Chaparro-Mercado, B. Bilyeu, Modeling of lead (II) biosorption by residue of allspice in a fixed-bed column. Chem. Eng. J. 228, 21–27 (2013)

    Article  Google Scholar 

  27. X. Zhang, X. Zhao, J. Hu, C. Wei, H. Bi, Adsorption dynamics of trichlorofluoromethane in activated carbon fiber bed. J. Hazard. Mater. 186, 1816–1822 (2011)

    Article  Google Scholar 

  28. Y. Shao, H. Zhang, Y. Yan, Adsorption dynamics of p-nitrophenol in structured fixed bed with microfibrous entrapped activated carbon. Chem. Eng. J. 225, 481–488 (2013)

    Article  Google Scholar 

  29. D. Sushanta, B. Krishna, C.G. Uday, Removal of Ni(II) and Cr(VI) with Titanium(IV) oxide nanoparticle agglomerates in fixed-bed columns. Ind. Eng. Chem. Res. 49, 2031–2039 (2010)

    Article  Google Scholar 

  30. A.A. Ahmad, B.H. Hameed, Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J. Hazard. Mater. 175, 298–303 (2010)

    Article  Google Scholar 

  31. R. Song, B. Bai, G.L. Puma, H. Wang, Y. Suo, Biosorption of azo dyes by raspberry-like Fe3O4@ yeast magnetic microspheres and their efficient regeneration using heterogeneous Fenton-like catalytic processes over an up-flow packed reactor. React. Kinet. Mech. Catal. 2, 547–562 (2015)

    Article  Google Scholar 

  32. S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, K. Fu, Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed-bed column study. Bioresour. Technol. 113, 114–120 (2012)

    Article  Google Scholar 

  33. M. Auta, B.H. Hameed, Chitosan-clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem. Eng. J. 237, 352–361 (2014)

    Article  Google Scholar 

  34. E. Malkoc, Y. Nuhoglu, Fixed bed studies for the sorption of chromium(VI) onto tea factory waste. Chem. Eng. Sci. 61, 4363–4372 (2006)

    Article  Google Scholar 

  35. J.M. Salman, V.O. Njoku, B.H. Hameed, Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon. Chem. Eng. J. 174, 33–40 (2011)

    Article  Google Scholar 

  36. P. Liao, Z. Zhan, J. Dai, Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: a batch and fixed-bed column study. Chem. Eng. J. 228, 496–505 (2013)

    Article  Google Scholar 

  37. R. Han, Y. Wang, W. Yu, W. Zou, J. Shi, H. Liu, Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column. J. Hazard. Mater. 141, 713–718 (2007)

    Article  Google Scholar 

  38. M. Calero, F. Hernáinz, G. Blázquez, G. Tenorio, M.A. Martín-Lara, Study of Cr(III) biosorption in a fixed-bed column. J. Hazard. Mater. 171, 886–893 (2009)

    Article  Google Scholar 

  39. L.H. Ai, H.Y. Huang, Z.L. Chen, X. Wei, J. Jiang, Activated carbon/CoFe2O4 composites: facile synthesis, magnetic performanceand their potential application for the removal of malachite green from water. Chem. Eng. J. 156, 243–249 (2010)

    Article  Google Scholar 

  40. M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280, 1–13 (2011)

    Article  Google Scholar 

  41. Y.Y. Lau, Y.S. Wong, T.T. Teng, N. Morad, M. Rafatullah, S.A. Ong, Degradation of cationic and anionic dyes in coagulation–flocculation process using bi-functionalized silica hybrid with aluminum-ferric as auxiliary agent. RSC Adv. 43, 34206–34215 (2015)

    Article  Google Scholar 

  42. S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, K. Fu, Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed-bed column study. Biores. Technol. 113, 114–120 (2012)

    Article  Google Scholar 

  43. P.D. Saha, S. Chakraborty, S. Chowdhury, Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloid Surf. B 92, 262–270 (2012)

    Article  Google Scholar 

  44. J.M. Arsuaga, J. Aguado, A. Arencibia, M.S. López-Gutiérrez, Aqueous mercury adsorption in a fixed bed column of thiol functionalized mesoporous silica. Adsorption 2–3, 311–319 (2014)

    Article  Google Scholar 

  45. H.C. Thomas, Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66, 1466–1664 (1944)

    Google Scholar 

  46. K.H. Chu, Fixed bed sorption: setting the record straight on the Bohart–Adams and Thomas models. J. Hazard. Mater. 177, 1006–1012 (2010)

    Article  Google Scholar 

  47. I. Kavianinia, P.G. Plieger, N.G. Kandile, D.R.K. Harding, Fixed-bed column studies on a modified chitosan hydrogel for detoxification of aqueous solutions from copper(II). Carbohyd. Polym. 90, 875–886 (2012)

    Article  Google Scholar 

  48. Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics. Part 1. A theoretical model for respirator cartridge service time. Am. Ind. Hyg. Assoc. J. 45, 509–516 (1984)

    Article  Google Scholar 

  49. D. Charumathi, N. Das, Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. tropicalis. Desalination 285, 22–30 (2012)

    Article  Google Scholar 

  50. K. Yaghmaeian, G. Moussavi, A. Alahabadi, Removal of amoxicillin from contaminated water using NH 4 Cl-activated carbon: continuous flow fixed-bed adsorption and catalytic ozonation regeneration. Chem. Eng. J. 236, 538–544 (2014)

    Article  Google Scholar 

  51. Y. Tian, B. Gao, V.L. Morales, H. Chen, Y. Wang, H. Li, Removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns. Chemosphere 10, 2597–2605 (2013)

    Article  Google Scholar 

  52. C. Su, X. Ran, J. Hu, C. Shao, Photocatalytic process of simultaneous desulfurization and denitrification of flue Gas by TiO2–polyacrylonitrile nanofibers. Environ. Sci. Technol. 20, 11562–11568 (2013)

    Article  Google Scholar 

  53. J. Peral, D.F. Ollis, Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. J. Catal. 2, 554–565 (1992)

    Article  Google Scholar 

  54. Y. Luo, D.F. Ollis, Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity. J. Catal. 1, 1–11 (1996)

    Article  Google Scholar 

  55. J.X. Yu, Z.Y. He, Y.F. Qi, R.A. Chi, J. Guo, G. Zhan, Regeneration of Rhodamine B Loaded Modified Biosorbent by a Self-Cleaning Eluent: TiO2 Hydrosol. CLEAN Soil Air Water 4, 400–405 (2011)

    Article  Google Scholar 

  56. V.K. Gupta, R. Jain, A. Mittal, M. Mathur, S. Sikarwar, Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J. Colloid Interface Sci. 2, 464–469 (2007)

    Article  Google Scholar 

  57. V.K. Gupta, R. Jain, A. Mittal, T.A. Saleh, A. Nayak, S. Agarwal, S. Sikarwar, Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater. Sci. Eng. 32, 12–17 (2012)

    Article  Google Scholar 

  58. V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Mater. Sci. Eng., C 5, 1062–1067 (2011)

    Article  Google Scholar 

  59. H. Masuda, T. Tanaka, U. Takahama, Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem. Biophys. Res. Commun. 2, 1175–1180 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (No. 21176031), Shanxi Provincial Natural Science Foundation of China (No. 2015JM2071), Fundamental Research Funds for the Central Universities-A Foundation for the Author of Excellent Doctoral Dissertation of Chang’an University (No. 310829150004) and Fundamental Research Funds for the Central Universities (No. 310829151073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, P., Bai, B., Guan, W. et al. Fixed-bed column studies for the removal of anionic dye from aqueous solution using TiO2@glucose carbon composites and bed regeneration study. J Mater Sci: Mater Electron 27, 867–877 (2016). https://doi.org/10.1007/s10854-015-3828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3828-z

Keywords

Navigation