Skip to main content
Log in

Biosorption of azo dyes by raspberry-like Fe3O4@yeast magnetic microspheres and their efficient regeneration using heterogeneous Fenton-like catalytic processes over an up-flow packed reactor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Raspberry-like Fe3O4@yeast composite microspheres, whose properties integrate the biosorption features of yeast cells with the excellent magnetic and catalytic properties of Fe3O4 nanoparticles, were synthesized by a simple electrostatic-interaction-driven self-assembly heterocoagulation. They were successfully applied in an up-flow packed column for the removal of the model water contaminant methylene blue dye (MB) by consecutive bioadsorption-heterogeneous Fenton oxidation cycles. The as-synthesized Fe3O4@yeast composites were characterized by field emission scanning electron microscopy, energy-dispersive spectroscopy (EDS), powder X-ray diffraction and Fourier transform infrared spectroscopy. The adsorption process was controlled by the electrostatic interactions between the adsorbent and contaminant. The adsorbent is suitable for the adsorption of positively charged compounds at mildly acidic pH, neutral and alkaline pH, with the highest performance observed at alkaline pH. The experimental breakthrough curves measured at different influent MB concentration, flow rate, bed height and pH were modeled by the Yoon-Nelson model. The in situ regeneration of the contaminant-loaded Fe3O4@yeast microspheres and their reuse in multiple cycles was demonstrated by triggering the heterogeneous Fenton-like reaction catalyzed by the supported magnetite. The raspberry-like Fe3O4@yeast magnetic microsphere should be a promising and practical adsorbent for removal and destruction of positively charged organic compounds in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu RC, Qu JH (2004) Water Environ Res 76:2637–2642

    Article  CAS  Google Scholar 

  2. Kovacic P, Somanathan R (2014) J Appl Toxicol 34:825–834

    Article  CAS  Google Scholar 

  3. Drogui P, Blais JF (2007) Recent Pat Eng 1:257–272

    Article  CAS  Google Scholar 

  4. Solís M, Solís A, Pérez HI, Manjarrez N, Flores M (2012) Process Biochem 47:1723–1748

    Article  Google Scholar 

  5. Janaki V, Vijayaraghavan K, Ramasamy AK, Lee KJ, Oh BT, Kamala-Kannan S (2012) J Hazard Mater 241–242:110–117

    Article  Google Scholar 

  6. Chen AH, Chen SM (2009) J Hazard Mater 172:1111–1121

    Article  CAS  Google Scholar 

  7. Yu JX, Chi RA, Su XZ, He ZY, Qi YF, Zhang YF (2010) J Hazard Mater 177:222–227

    Article  CAS  Google Scholar 

  8. Rache ML, García AR, Zea HR, Silva AMT, Madeira LM, Ramírez JH (2014) Appl. Catal. B: Environ. 146:192–200

    Article  CAS  Google Scholar 

  9. Gu L, Huang S, Zhu N, Zhang D, Yuan H, Lou Z (2013) J Hazard Mater 263:450–457

    Article  CAS  Google Scholar 

  10. Maria ADL, Marta S, Juan B (2013) Reac Kinet Mech Cat 110:101–117

    Article  Google Scholar 

  11. Liang X, Zhong Y, Zhu S, Zhu J, Yuan P, He H, Zhang J (2010) J Hazard Mater 181:112–120

    Article  CAS  Google Scholar 

  12. Xavier S, Gandhimathi R, Nidheesh PV, Ramesh ST (2013) Desalin Water Treat 53(1):109–118. doi:10.1080/19443994.2013.844083

    Article  Google Scholar 

  13. Wu RC, Qu JH (2004) Water Environ Res 76:2637–2642

    Article  CAS  Google Scholar 

  14. Kong SH, Watts RJ, Choi JH (1998) Chemosphere 37:1473–1482

    Article  CAS  Google Scholar 

  15. Tyre BW, Watts RJ, Miller GC (1991) J Environ Qual 20:832–838

    Article  CAS  Google Scholar 

  16. Guo SJ, Dong SJ, Wang EK (2009) J Phys Chem C 113:5485–5492

    Article  CAS  Google Scholar 

  17. Zhang L, Li Y, Sun JQ, Shen JC (2008) Langmuir 24:10851–10857

    Article  CAS  Google Scholar 

  18. Liu HL, Wang D, Yang XL (2012) Colloids Surf A 397:48–58

    Article  CAS  Google Scholar 

  19. Wang X, Akagi T, Akashi M, Masanori B (2007) Mini-Rev Org Chem 4:51–59

    Article  CAS  Google Scholar 

  20. Tsai HJ, Lee YL (2007) Langmuir 23:12687–12692

    Article  CAS  Google Scholar 

  21. Bai B, Quici N, Li ZY, Puma GL (2011) Chem Eng J 170:451–456

    Article  CAS  Google Scholar 

  22. Zhang SX, Zhao XL, Niu HY, Shi YL, Cai YQ, Jiang GB (2009) J Hazard Mater 167:560–566

    Article  CAS  Google Scholar 

  23. Zhu T, Chen JS, Lou XW (2011) David. J Phys Chem C 115:9814–9820

    Article  CAS  Google Scholar 

  24. Duan LF, Jia SS, Wang YJ, Chen J, Zhao LJ (2009) J Mater Sci 44:4407–4412

    Article  CAS  Google Scholar 

  25. Kim NS, Kim JD (2012) J Ind Eng Chem 18:1721–1729

    Article  CAS  Google Scholar 

  26. Su XD, Zhao JZ, Li YL, Zhu YC, Ma XK, Sun F, Wang ZC (2009) Colloids Surf A 349:151–155

    Article  CAS  Google Scholar 

  27. Hassan MS, Amna T, Yang OB, Kim HC, Khil MS (2012) Ceram Int 38:5925–5930

    Article  CAS  Google Scholar 

  28. Li ZP, Gao L, Zheng S (2002) Appl Catal A 236:163–171

    Article  CAS  Google Scholar 

  29. Kumar S, Surendar T, Kumar B, Baruah A, Shanker V (2013) J Phys Chem C 117:26135–26143

    Article  CAS  Google Scholar 

  30. Cui JJ, He W, Liu HT, Liao SJ, Yue YZ (2009) Colloids Surf B 74:274–278

    Article  CAS  Google Scholar 

  31. Blakeslee KC, Robert A, Condrate SR (1971) J Am Ceram Soc 54:559–563

    Article  CAS  Google Scholar 

  32. Joris SJ, Amberg CH (1971) J Phys Chem 75:3172–3178

    Article  CAS  Google Scholar 

  33. Chang YC, Chen DH (2005) J. Colloid Interf Sci 283:446–451

    Article  CAS  Google Scholar 

  34. Mercier-Bonin M, Ouazzani K, Schmitz P, Lorthois S (2004) J Colloid Interf Sci 271:342–350

    Article  CAS  Google Scholar 

  35. Wang JL, Chen C (2009) Biotechnol Adv 27:195–226

    Article  Google Scholar 

  36. Mann S, Archibald DD, Didymus JM, Douglas T, Heywood BR, Meldrum FC, Reeves NJ (1993) Science 261:1286–1292

    Article  CAS  Google Scholar 

  37. Ai LH, Huang HY, Chen ZL, Wei X, Jiang J (2010) Chem Eng J 156:243–249

    Article  CAS  Google Scholar 

  38. Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Desalination 280:1–13

    Article  CAS  Google Scholar 

  39. Doğan M, Alkan M (2003) Chemosphere 50:517–528

    Article  Google Scholar 

  40. Thomas HC (1944) J Am Chem Soc 66:1664–1666

    Article  CAS  Google Scholar 

  41. Yoon YH, Nelson JH (1984) Am Ind Hyg Assoc J 45:509–516

    Article  CAS  Google Scholar 

  42. Hasan SH, Ranjan D, Talat M (2010) J Hazard Mater 181:1134–1142

    Article  CAS  Google Scholar 

  43. Kavitha D, Namasivayam C (2007) Bioresour Technol 98:14–21

    Article  CAS  Google Scholar 

  44. Chen L, Bai B (2013) Ind Eng Chem Res 52:15568–15577

    Article  CAS  Google Scholar 

  45. Ai LH, Zhang CY, Liao F, Wang Y, Li M, Meng LY, Jiang J (2011) J Hazard Mater 198:282–290

    Article  CAS  Google Scholar 

  46. Mohan SV, Mohan SK, Kathikeyan MJ (2001) J Sci Ind Res 60:410–415

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by China Postdoctoral Science Special Foundation, Scientific Research Foundation for the Returned Overseas Chinese Scholars, National Natural Science Foundation of China (No.21176031) and Fundamental Research Funds for the Central Universities (No. 2013G2291015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Bai.

Electronic supplementary material

Below is the link to the electronic supplementary material. Additional information as noted in the text. This material is available free of charge via the Internet at http://link.springer.com.

Supplementary material 1 (DOCX 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, R., Bai, B., Puma, G.L. et al. Biosorption of azo dyes by raspberry-like Fe3O4@yeast magnetic microspheres and their efficient regeneration using heterogeneous Fenton-like catalytic processes over an up-flow packed reactor. Reac Kinet Mech Cat 115, 547–562 (2015). https://doi.org/10.1007/s11144-015-0854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0854-z

Keywords

Navigation