Skip to main content
Log in

Growth kinetics of intermetallic layer in lead-free Sn–5Sb solder reinforced with multi-walled carbon nanotubes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the effects of multi-walled carbon nanotubes reinforcement on the thickness and growth kinetics of interfacial intermetallic compound (IMC) layer in Sn–5Sb solder system are investigated. In the typical study, plain Sn–5Sb solder system and carbon nanotubes reinforced solder systems (Sn–5Sb−xCNT; x = 0.01, 0.05 and 0.1 wt%) were developed via the powder metallurgy approach. The solder/Cu joints subjected to the as-reflow and isothermal aging (170 °C) conditions were systematically characterised to evaluate the growth of the IMC layer. Results suggest that the composite solders showed better results for all subjected conditions compared with the plain solder. In particular, 0.05 wt % CNTs reinforced solder system exhibited the most appreciable IMC layer suppression and diffusion coefficient among all the samples analysed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.M.L. Nai, J. Wei, M. Gupta, Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes. Mater. Sci. Eng. A 423(1–2), 166–169 (2006). doi:10.1016/j.msea.2005.10.072

    Article  Google Scholar 

  2. K.M. Kumar, V. Kripesh, A.A.O. Tay, Single-wall carbon nanotube (SWCNT) functionalized Sn–Ag–Cu lead-free composite solders. J. Alloys Compd. 450(1–2), 229–237 (2008). doi:10.1016/j.jallcom.2006.10.123

    Article  Google Scholar 

  3. T. Wang, P. Zhou, F. Cao, H. Kang, Z. Chen, Y. Fu et al., Growth behavior of Cu6Sn5 in Sn–6.5 Cu solders under DC considering trace Al: in situ observation. Intermetallics 58, 84–90 (2015). doi:10.1016/j.intermet.2014.11.010

    Article  Google Scholar 

  4. T. Laurila, J. Hurtig, V. Vuorinen, J.K. Kivilahti, Effect of Ag, Fe, Au and Ni on the growth kinetics of Sn–Cu intermetallic compound layers. Microelectron. Reliab. 49(3), 242–247 (2009). doi:10.1016/j.microrel.2008.08.007

    Article  Google Scholar 

  5. A.S.M.A. Haseeb, Y.M. Leong, M.M. Arafat, In-situ alloying of Sn–3.5 Ag solder during reflow through Zn nanoparticle addition and its effects on interfacial intermetallic layers. Intermetallics 54, 86–94 (2014). doi:10.1016/j.intermet.2014.05.011

    Article  Google Scholar 

  6. V.L. Pushparaj, L. Ci, S. Sreekala, A. Kumar, S. Kesapragada, D. Gall, J. Suhr, Effects of compressive strains on electrical conductivities of a macroscale carbon nanotube block. Appl. Phys. Lett. 91(15), 153116 (2007)

    Article  Google Scholar 

  7. T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358(6383), 220–222 (1992)

    Article  Google Scholar 

  8. M. Endo, M.S. Strano, P.M. Ajayan, Potential applications of carbon nanotubes. Trop. Appl. Phys. 111, 13–62 (2008)

    Article  Google Scholar 

  9. E.T. Thostenson, Z. Ren, T. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  10. J. Salvetat-Delmotte, A. Rubio, Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 40, 1729–1734 (2002)

    Article  Google Scholar 

  11. E. Saether, S.J. Frankland, R.B. Pipes, Nanostructured composites: effective mechanical properties determination of nanotube bundles. Compos. Sci. Technol. 63(11), 1543 (2003)

    Article  Google Scholar 

  12. Y.D. Han, S.M.L. Nai, H.Y. Jing, L.Y. Xu, C.M. Tan, J. Wei, Development of a Sn–Ag–Cu solder reinforced with Ni-coated carbon nanotubes. J. Mater. Sci.: Mater. Electron. 22(3), 315–322 (2010). doi:10.1007/s10854-010-0135-6

    Google Scholar 

  13. K.M. Kumar, V. Kripesh, L. Shen, A.A.O. Tay, Study on the microstructure and mechanical properties of a novel SWCNT-reinforced solder alloy for ultra-fine pitch applications. Thin Solid Films 504(1–2), 371–378 (2006). doi:10.1016/j.tsf.2005.09.072

    Article  Google Scholar 

  14. K.M. Kumar, V. Kripesh, A.A.O. Tay, Influence of single-wall carbon nanotube addition on the microstructural and tensile properties of Sn–Pb solder alloy. J. Alloys Compd. 455(1–2), 148–158 (2008). doi:10.1016/j.jallcom.2007.01.045

    Article  Google Scholar 

  15. S.M.L. Nai, J. Wei, M. Gupta, Effect of carbon nanotubes on the shear strength and electrical resistivity of a lead-free solder. J. Electron. Mater. 37(4), 515–522 (2008). doi:10.1007/s11664-008-0379-6

    Article  Google Scholar 

  16. V.L. Niranjani, B.S.S.C. Rao, V. Singh, S.V. Kamat, Influence of temperature and strain rate on tensile properties of single walled carbon nanotubes reinforced Sn–Ag–Cu lead free solder alloy composites. Mater. Sci. Eng. A 529, 257–264 (2011). doi:10.1016/j.msea.2011.09.026

    Article  Google Scholar 

  17. S. Chantaramanee, S. Wisutmethangoon, L. Sikong, T. Plookphol, Development of a lead-free composite solder from Sn–Ag–Cu and Ag-coated carbon nanotubes. J. Mater. Sci.: Mater. Electron. 24(10), 3707–3715 (2013). doi:10.1007/s10854-013-1307-y

    Google Scholar 

  18. J. Zhao, C. Cheng, L. Qi, C. Chi, Kinetics of intermetallic compound layers and shear strength in Bi-bearing SnAgCu/Cu soldering couples. J. Alloys Compd. 473(1–2), 382–388 (2009). doi:10.1016/j.jallcom.2008.05.082

    Article  Google Scholar 

  19. K. Kanlayasiri, T. Ariga, Influence of thermal aging on microhardness and microstructure of Sn–0.3 Ag–0.7Cu–xIn lead-free solders. J. Alloys Compd. 504(1), L5–L9 (2010). doi:10.1016/j.jallcom.2010.05.057

    Article  Google Scholar 

  20. M. Sadiq, R. Pesci, M. Cherkaoui, Impact of thermal aging on the microstructure evolution and mechanical properties of lanthanum-doped Tin–Silver–Copper lead-free solders. J. Electron. Mater. 42(3), 492–501 (2013). doi:10.1007/s11664-012-2351-8

    Article  Google Scholar 

  21. S. Xu, Y. Cheong, K. Zhang, K.C. Yung, Interfacial intermetallic growth and mechanical properties of carbon nanotubes reinforced Sn3. 5Ag0. 5Cu solder joint under current stressing. J. Alloys Compd. 595, 92–102 (2014). doi:10.1016/j.jallcom.2014.01.083

    Article  Google Scholar 

  22. S.M.L. Nai, J. Wei, M. Gupta, Interfacial intermetallic growth and shear strength of lead-free composite solder joints. J. Alloys Compd. 473(1–2), 100–106 (2009). doi:10.1016/j.jallcom.2008.05.070

    Article  Google Scholar 

  23. F.X. Che, W.H. Zhu, E.S.W. Poh, X.W. Zhang, X.R. Zhang, The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures. J. Alloys Compd. 507(1), 215–224 (2010). doi:10.1016/j.jallcom.2010.07.160

    Article  Google Scholar 

  24. G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates. J. Mater. Sci.: Mater. Electron. 21, 421–440 (2010). doi:10.1007/s10854-010-0086-y

    Google Scholar 

  25. K. Suganuma, S. Kim, K. Kim, High-temperature lead-free solders: properties and possibilities. J. Miner. Met. 61, 64–71 (2009)

    Article  Google Scholar 

  26. A.A. El-Daly, A. Fawzy, A.Z. Mohamad, A.M. El-Taher, Microstructural evolution and tensile properties of Sn–5Sb solder alloy containing small amount of Ag and Cu. J. Alloys Compd. 509(13), 4574–4582 (2011). doi:10.1016/j.jallcom.2011.01.109

    Article  Google Scholar 

  27. H.R. Kotadia, O. Mokhtari, M.P. Clode, M.A. Green, S.H. Mannan, Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni–P substrates. J. Alloys Compd. 511(1), 176–188 (2012). doi:10.1016/j.jallcom.2011.09.024

    Article  Google Scholar 

  28. J. Yoon, S. Kim, S. Jung, IMC growth and shear strength of Sn–Ag–Bi-In/Au/Ni/Cu BGA joints during aging. Mater. Trans. 45(3), 727–733 (2004)

    Article  Google Scholar 

  29. C.H. Wang, H.H. Chen, P.Y. Li, P.Y. Chu, Kinetic analysis of Ni 5Zn 21 growth at the interface between Sn–Zn solders and Ni. Intermetallics 22, 166–175 (2012). doi:10.1016/j.intermet.2011.11.008

    Article  Google Scholar 

  30. R. Mayappan, I. Yahya, N.A.A. Ghani, H.A. Hamid, The effect of adding Zn into the Sn–Ag–Cu solder on the intermetallic growth rate. J. Mater. Sci.: Mater. Electron. (2014). doi:10.1007/s10854-014-1959-2

    Google Scholar 

  31. X. Hu, Y. Li, Z. Min, Interfacial reaction and IMC growth between Bi-containing Sn0.7Cu solders and Cu substrate during soldering and aging. J. Alloys Compd. 582, 341–347 (2014). doi:10.1016/j.jallcom.2013.08.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. T. Dele-Afolabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dele-Afolabi, T.T., Azmah Hanim, M.A., Norkhairunnisa, M. et al. Growth kinetics of intermetallic layer in lead-free Sn–5Sb solder reinforced with multi-walled carbon nanotubes. J Mater Sci: Mater Electron 26, 8249–8259 (2015). https://doi.org/10.1007/s10854-015-3488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3488-z

Keywords

Navigation