Skip to main content
Log in

Synthesis and microwave absorbing properties of Ni–Cu ferrite/MWCNTs composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electromagnetic and microwave absorbing properties of the nickel–copper (Ni–Cu) nanoferrites and multi-walled carbon nanotubes (MWCNTs) filled into epoxy resin were investigated in the X band (8.2–12.4 GHz), and the Ni–Cu nanoferrites were synthesized using auto-combustion method. The Ni–Cu ferrite annealing temperature was chosen at 600 °C to obtain the good magnetic properties. When the MWCNTs were added, the values of complex permittivity were enhanced by improving the interfacial polarization. The magnetic properties may be attributed to increase the concentration of Fe3+ ions in octahedral sites, which in turn induces the magnetization of the Ni–Cu ferrite. By changing the MWCNTs content, the optimizing reflection loss bandwidth below −10 dB can reach 3.2 GHz with the absorber thickness of 2.3 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.X. Wang, J. Zhang, Q.T. Zhang, The effect of MWCNTs on the microwave electromagnetic properties of ferrite–MWCNTs composites. J. Mater. Sci. Mater. Electron. 26, 1895–1899 (2015)

    Article  Google Scholar 

  2. H.Y. Wang, D.M. Zhu, W.C. Zhou, L. Fa, High temperature electromagnetic and microwave absorbing properties of polyimide/multi-walled carbon nanotubes nanocomposites. Chem. Phys. Lett. 633, 223–228 (2015)

    Article  Google Scholar 

  3. H.Y. Wang, D.M. Zhu, W.C. Zhou, L. Fa, Influence of heat treatment on the electromagnetic properties of polyimide/carbon black composites. Polym. Adv. Technol. 25, 1616–1621 (2014)

    Article  Google Scholar 

  4. J. Zhan, Y.L. Yao, C.F. Zhang, C.J. Li, Synthesis and microwave absorbing properties of quasione-dimensional mesoporous NiCo2O4 nanostructure. J. Alloys Compd. 585, 240–244 (2014)

  5. Z. Durmus, A. Durmus, H.Y. Kavas, Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave absorbing material. J. Mater. Sci. 50, 1201–1213 (2015)

    Article  Google Scholar 

  6. M. Fu, Q.Z. Jiao, Y. Zhao, Preparation of NiFe2O4 nanorod–graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties. J. Mater. Chem. A 1, 5577–5586 (2013)

    Article  Google Scholar 

  7. J. Zhang, L.X. Wang, Q.T. Zhang, Hydrothermal carbonization synthesis of BaZn2F16O27/carbon composite microwave absorbing materials and its electromagnetic performance. J. Mater. Sci. Mater. Electron. 26, 2538–2543 (2015)

    Article  Google Scholar 

  8. P.B. Liu, Y. Huang, L. Wang, W. Zhang, Preparation and excellent microwave absorption property of three component nanocomposites: polyaniline-reduced graphene oxide-Co3O4 nanoparticles. Synth. Met. 77, 89–93 (2013)

    Article  Google Scholar 

  9. X.H. Huang, B. Dai, Y. Ren, J. Xu, C.Y. Zhao, Controllable synthesis and electromagnetic interference shielding properties of magnetic CoNi alloy nanoparticles coated on biocarbon nanofibers. J. Mater. Sci. Mater. Electron. 26, 2584–2588 (2015)

    Article  Google Scholar 

  10. P. Bhattacharya, C.K. Das, In situ synthesis and characterization of CuFe10Al2O19/MWCNT nanocomposites for supercapacitor and microwave absorbing application. Ind. Eng. Chem. Res. 52, 9594–9606 (2013)

    Article  Google Scholar 

  11. H.L. Lv, G.B. Ji, X.H. Liang, H.Q. Zhang, Y.W. Du, A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 3, 5056–5064 (2015)

    Article  Google Scholar 

  12. X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, Enhanced microwave absorption property of reduced graphene oxide (RGO)–MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 6, 7471–7478 (2014)

    Article  Google Scholar 

  13. P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powder prepared by the Aloe vera extract solution. Curr. Appl. Phys. 11, 101–108 (2011)

    Article  Google Scholar 

  14. C.N. Chinnasamy, A. Narayanasamya, N. Ponpandiana, R.J. Joseyphusa, B. Jeyadevan, K. Tohjib, K. Chattopadhyay, Grain size effect on the Neel temperature and magnetic properties of nanocrystalline NiFe2O4 spinel. J. Magn. Magn. Mater. 238, 281–287 (2002)

    Article  Google Scholar 

  15. A. Narayanasamy, N. Sivakumar, Influence of mechanical milling and thermal annealing on electrical and magnetic properties of nanostructured Ni–Zn and cobalt ferrites. Bull. Mater. Sci. 31, 373–380 (2008)

    Article  Google Scholar 

  16. A.S. Dzunuzovic, N.I. IIic, M.M. Vijatovic Petrovic, J.D. Bobic, B. Stojadinovic, Z. Dohcevic Mitrovic, B.D. Stojanovic, Structure and properties of Ni–Zn ferrite obtained by auto combustion method. J. Magn. Magn. Mater. 374, 246–251 (2015)

    Article  Google Scholar 

  17. S.G. Doh, E.B. Kim, B.H. Lee, J.H. Oh, Characteristics and synthesis of Cu–Ni nanopowders by coprecipitation method with ultrasound irradiation. J. Magn. Magn. Mater. 272–274, 2238–2240 (2004)

    Article  Google Scholar 

  18. E. Ranjith Kumar, R. Jayaprakash, S. Kumar, Effects of annealing temperature on structural and magnetic properties of manganese substituted NiFe2O4 nanocomposites. Mater. Sci. Semicond. Proc. 17, 173–177 (2014)

  19. B.J. Madhu, S.T. Ashwini, B. Shruthi, B.S. Divyashree, A. Manjunath, H.S. Jayanna, Structural, dielectric and electromagnetic shielding properties of Ni–Cu nanoferrite/PVP composites. Mater. Sci. Eng. B 186, 1–6 (2014)

    Article  Google Scholar 

  20. X.M. Liu, G. Yang, S.Y. Fu, Mass synthesis of nanocrystalline spinel ferrites by a polymer pyrolysis route. Mater. Sci. Eng. C 27, 750–755 (2007)

    Article  Google Scholar 

  21. J. Azadmanjiri, H.K. Salehani, M.R. Barati, F. Farzan, Preparation and electromagnetic properties of Ni1−xCuxFe2O4 nanoparticles ferrites by sol–gel auto-combustion method. Mater. Lett. 61, 84–87 (2007)

    Article  Google Scholar 

  22. M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009)

    Article  Google Scholar 

  23. D.R. Patil, B.K. Chougule, Effect of copper substitution on electric and magnetic properties of NiFe2O4 ferrite. Mater. Chem. Phys. 117, 35–40 (2009)

    Article  Google Scholar 

  24. Y.C. Qing, W.C. Zhou, S.S. Huang, Z.B. Huang, F. Luo, D.M. Zhu, Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy silicon. J. Alloys Compd. 583, 471–475 (2014)

    Article  Google Scholar 

  25. W.M. Zhu, L. Wang, R. Zhao, J.W. Ren, G.Z. Lu, Y.Q. Wang, Electromagnetic and microwave absorbing properties of magnetic nickel ferrite nanocrystals. Nanoscale 3, 2862 (2011)

    Article  Google Scholar 

  26. H.T. Zhao, X.D. Sun, C.H. Mao, J. Du, Preparation and microwave-absorbing properties of NiFe2O4–polystyrene composites. Phys. B 404, 69–72 (2009)

Download references

Acknowledgments

This work was financed by the Chinese National Natural Science Foundation of China (Grant No. 51072165), and the fund of State Key Laboratory of Solidification Processing in Northwestern Polytechnical University (No. KP201307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhu, D., Zhou, W. et al. Synthesis and microwave absorbing properties of Ni–Cu ferrite/MWCNTs composites. J Mater Sci: Mater Electron 26, 7698–7704 (2015). https://doi.org/10.1007/s10854-015-3411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3411-7

Keywords

Navigation