Skip to main content
Log in

Ferroelectric control of magnetism in P(VDF–TrFE)/Co heterostructure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic magnetoelectric composite systems such as ferroelectric and ferromagnetic heterostructures have attracted an interest recently and have the potential applications such as four state memories, magnetic sensor and spintronics. In this study, we focus on the ferroelectric copolymer/ferromagnetic Co multiferroic film. The ferroelectric copolymer poly(vinylidene fluoride–trifluoroethylene) was fabricated by Langmuir–Blodgett deposition technique. Large magnetization changes of the Co films emerge in response to ferroelectric switching of poly(vinylidene fluoride–trifluoroethylene) controlled by applied electric field. The magnetization of the Co films was detected by the magneto-optical Kerr effect system. Although ferroelectric polymer poly(vinylidene fluoride–trifluoroethylene) have the lower piezoelectric coefficient about 30 pC/N than inorganic ferroelectrics, interface strain coupling is also the primary mechanism altering the induced magnetic anisotropy in the poly(vinylidene fluoride–trifluoroethylene)/Co heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Curie, Physique 3, 393 (1894)

    Google Scholar 

  2. M. Bibes, A. Barthelemy, Nat. Mater. 7, 425 (2008)

    Article  Google Scholar 

  3. J.M. Hu, Z. Li, J. Wang, C.W. Nan, J. Appl. Phys. 107, 093912 (2010)

    Article  Google Scholar 

  4. H. Schmid, Ferroelectrics 161, 1 (1994)

    Article  Google Scholar 

  5. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)

    Article  Google Scholar 

  6. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, M. Fiebig, Nature 430, 541 (2004)

    Article  Google Scholar 

  7. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, Nature 408, 944 (2000)

    Article  Google Scholar 

  8. D. Chiba, S. Fukami, K. Shimamura, N. Ishiwata, K. Kobayashi, T. Ono, Nat. Mater. 10, 853 (2011)

    Article  Google Scholar 

  9. I. Stolichnov, S.W.E. Riester, H.J. Trodahl, N. Setter, A.W. Rushforth, K.W. Edmonds, R.P. Campion, C.T. Foxon, B.L. Gallagher, T. Jungwirth, Nat. Mater. 7, 464 (2008)

    Article  Google Scholar 

  10. X. Ma, A. Kumar, S. Dussan, H. Zhai, F. Fang, H.B. Zhao, J.F. Scott, R.S. Katiyar, G. Lupke, Appl. Phys. Lett. 104, 132905 (2014)

    Article  Google Scholar 

  11. W. Prellier, M.P. Singh, P. Murugavel, J. Phys.-Condens. Mat. 17, R803 (2005)

    Article  Google Scholar 

  12. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    Article  Google Scholar 

  13. Y. Tokura, S. Seki, Adv. Mater. 22, 1554 (2010)

    Article  Google Scholar 

  14. Jing Ma, Hu Jiamian, Zheng Li, Ce-Wen Nan, Adv. Mater. 23, 1062 (2011)

    Article  Google Scholar 

  15. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  16. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  17. M. Weisheit, S. Fahler, A. Marty, Y. Souche, C. Poinsignon, D. Givord, Science 315, 349 (2007)

    Article  Google Scholar 

  18. H. Bea, M. Gajek, M. Bibes, A. Barthelemy, J. Phys.-Condens. Mat. 20, 434221 (2008)

    Article  Google Scholar 

  19. Sarbeswar Sahoo, Srinivas Polisetty, Chun-Gang Duan, Sitaram S. Jaswal, Evgeny Y. Tsymbal, Christian Binek, Phys. Rev. B 76, 092108 (2007)

    Article  Google Scholar 

  20. M. Liu, O. Obi, J. Lou, Y. Chen, Z. Cai, S. Stoute, M. Espanol, M. Lew, X. Situ, K.S. Ziemer, Adv. Funct. Mater. 19, 1826 (2009)

    Article  Google Scholar 

  21. A.V. Bune, V.M. Fridkin, S. Ducharme, L.M. Blinov, S.P. Palto, A. Sorokin, S.G. Yudin, A. Zlatkin, Nature 391, 874 (1998)

    Article  Google Scholar 

  22. S. Ducharme, A. Bune, V.M. Fridkin, L.M. Blinov, S. Palto, A. Sorokin, S.G. Yudin, Phys. Rev. B 57, 25 (1998)

    Article  Google Scholar 

  23. S. Palto, L. Blinov, A. Bune, E. Dubovik, V. Fridkin, N. Petukhova, K. Verkhovskaya, S. Yudin, Ferroelectr. Lett. Sect. 19, 65 (1995)

    Article  Google Scholar 

  24. R.C.G. Naber, P.W.M. Blom, D.M. de Leeuw, J. Phys. D 39, 1984 (2006)

    Article  Google Scholar 

  25. V.F. Cardoso, G. Minas, C.M. Costa, C.J. Tavares, S. Lanceros-Mendez, Smart Mater. Struct. 20, 087002 (2011)

    Article  Google Scholar 

  26. J. Ma, Y.H. Lin, C.W. Nan, J. Phys. D Appl. Phys. 43, 012001 (2010)

    Article  Google Scholar 

  27. C.A. Nguyenz, P.S. Lee, Y.A. Yee, H. Lu, M. Srinivasan, S.G. Mhaisalkar, J. Electrochem. Soc. 154, G224 (2007)

    Article  Google Scholar 

  28. A.J. Lovinger, Science 220, 1115 (1983)

    Article  Google Scholar 

  29. C. Thiele, K. Dorr, O. Bilani, J. Rodel, L. Schultz, Phys. Rev. B 75, 054408 (2007)

    Article  Google Scholar 

  30. S. Chen, X. Li, K. Yao, F.E.H. Tay, A. Kumar, K. Zeng, Polymer 53, 1404 (2012)

    Article  Google Scholar 

  31. X.L. Zhao, J.L. Wang, B.B. Tian, B.L. Liu, X.D. Wang, S. Sun, Y.H. Zou, T. Lin, J.L. Sun, X.J. Meng, J.H. Chu, Appl. Phys. Lett. 105, 222907 (2014)

    Article  Google Scholar 

  32. T. Wu, M.A. Zurbuchen, S. Saha, R.-V. Wang, S.K. Streiffer, J.F. Mitchell, Phys. Rev. B 73, 134416 (2006)

    Article  Google Scholar 

  33. J. van Suchtelen, Philips Res. Rep. 27, 28 (1972)

    Google Scholar 

  34. C.W. Nan, Phys. Rev. B 50, 6082 (1994)

    Article  Google Scholar 

  35. K. Lefki, G.J.M. Dormans, J. Appl. Phys. 76, 1764 (1994)

    Article  Google Scholar 

  36. A. Mardana, S. Ducharme, S. Adenwalla, Nano Lett. 11, 3862 (2011)

    Article  Google Scholar 

  37. L. Shu, Z. Li, J. Ma, Y. Gao, L. Gu, Y. Shen, Y. Lin, C.W. Nan, Appl. Phys. Lett. 100, 022405 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Major State Basic Research Development Program (Grant No. 2013CB922302), the Natural Science Foundation of China (Grant Nos. 11374320, 61474131) and Natural Science Foundation of Shanghai (13JC1406000), the Natural Science Foundation of Hunan Province (Grant No. 2015JJ6024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianlu Wang or Qingfeng Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zhang, Y., Wang, J. et al. Ferroelectric control of magnetism in P(VDF–TrFE)/Co heterostructure. J Mater Sci: Mater Electron 26, 7502–7506 (2015). https://doi.org/10.1007/s10854-015-3385-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3385-5

Keywords

Navigation