Skip to main content
Log in

Dielectric relaxation behaviour of ethylene-vinyl acetate–exfoliated graphene nanoplatelets (xGnP) composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric relaxation behaviour of the composites prepared by solution casting of exfoliated graphene nanoplatelets (xGnP) and ethylene vinyl acetate (EVA) were investigated. The percolation threshold was achieved at 17 phr (parts per hundred rubber) of xGnP loading. Filler contributions to the electrical property were observed by the increase in ac conductivity and permittivity in the composites. The effect of filler loading on the complex and real parts of the impedance were investigated. The effect of temperature on dielectric loss tangent, ac conductivity and Nyquist plot of xGnP reinforced EVA also been studied. A careful comparison of the experimental complex impedance plots and model fitted plots were studied which satisfied the accuracy of the data obtained experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B. Lundberg, B. Sundqvist, J. Appl. Phys. 60(3), 1074 (1986)

    Article  Google Scholar 

  2. I. Balberg, N. Binenbaum, Scher and Zallen. Phys. Rev. B 35(16), 8749 (1987)

    Article  Google Scholar 

  3. G.R. Ruschau, R.E. Newnham, J. Compos. Mater. 26(18), 2727 (1992)

    Article  Google Scholar 

  4. W.Y. Hsu, W.G. Holtje, J.R. Barkley, J. Mater. Sci. Lett. 7(5), 459 (1988)

    Article  Google Scholar 

  5. K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita, K. Ishikawa, J. Mater. Sci. 17(6), 1610 (1982)

    Article  Google Scholar 

  6. M. Sumita, H. Abe, H. Kayaki, K. Miyasaka, J. Macromol. Sci. Phys. B 25, 171 (1986)

    Article  Google Scholar 

  7. G. Chen, J. Lu, W. Lu, D. Wu, C. Wu, Polym. Int. 54(12), 1689 (2005)

    Google Scholar 

  8. W. Zheng, S.C. Wong, H.J. Sue, Polymer 43(25), 6767 (2002)

    Article  Google Scholar 

  9. W.G. Zheng, S.C. Wong, Compos. Sci. Technol. 63(2), 225 (2003)

    Article  Google Scholar 

  10. S. Kim, I. Do, L.T. Drzal, Macromol. Mater. Eng. 294(3), 196 (2009)

    Article  Google Scholar 

  11. S. Kim, J. Seo, L.T. Drzal, Compos A Appl Sci 41(5), 581 (2010)

    Article  Google Scholar 

  12. H. Fukushima, Graphite nanoreinforcements in polymer nanocomposites. Ph.D. Thesis, Michigan State University, East Lansing, MI (2003)

  13. K. Kalaitzidou, Exfoliated graphite nanoplatelets as reinforcement for multifunctional polypropylene nanocomposites. Ph.D. Thesis, Michigan State University, East Lansing, MI (2003)

  14. K. Kalaitzidou, H. Fukushima, L.T. Drzal, Carbon 45(7), 1446 (2007)

    Article  Google Scholar 

  15. B. Agoudjil, L. Ibos, Y. Candau, J.C. Majeste, J. Phys. D Appl. Phys. 41(05), 01 (2008)

    Article  Google Scholar 

  16. J. Robertson, D.A. Hall, J. Phys. D Appl. Phys. 41(11), 01 (2008)

    Article  Google Scholar 

  17. M. Brogly, M. Nardin, J. Schultz, J. Appl. Polym. Sci. 64(10), 1903 (1997)

    Article  Google Scholar 

  18. A. Arsac, C. Carrot, J. Guillet, J. Appl. Polym. Sci. 74(10), 2625 (1999)

    Article  Google Scholar 

  19. S. Bistac, P. Kunemann, J. Schultz, Polymer 39(20), 4875 (1998)

    Article  Google Scholar 

  20. N. Gospodinova, T. Zlatkov, L. Terlemezyan, Polymer 39(12), 2583 (1998)

    Article  Google Scholar 

  21. S. Peeterbroeck, B. Lepoittevin, E. Pollet, S. Benali, C. Broekaert, M.D. Alexandre, P.B. Viville, R. Lazzaroni, P. Dubois, Polym. Eng. Sci. 46(8), 1022 (2006)

    Article  Google Scholar 

  22. S. Peeterbroeck, M. Alexandre, J.B. Nagy, C. Pirlot, A. Fonseca, N. Moreau, G. Philippin, J. Delhalle, Z. Mekhalif, R. Sporken, G. Beyer, P. Dubois, Compos. Sci. Technol. 64(15), 2317 (2004)

    Article  Google Scholar 

  23. K.Y. Lee, K.Y. Kim, Polym. Degrad. Stab. 93(7), 1290 (2008)

    Article  Google Scholar 

  24. S. Peeterbroeck, F. Laoutid, B. Swoboda, J.M. Lopez Cuesta, N. Moreau, J.B. Nagy, M. Alexandre, P. Dubois, Macromol. Rapid. Commun. 28(3), 260 (2007)

    Article  Google Scholar 

  25. S. Kima, J. Seo, L.T. Drzal, Compos. A 41, 581 (2010)

    Article  Google Scholar 

  26. Nylon–exfoliated graphite nanoplatelet (xGnP) nanocomposites with enhanced mechanical, electrical and thermal properties NSTI-nanotech www.nsti.org, Vol. 1. ISBN 0-9767985-6-5 (2006)

  27. X. Jiang, L.T. Drzal, J. Appl. Polym. Sci. 124, 525 (2012)

    Article  Google Scholar 

  28. C.P. Smyth, vol 53 (Mc Graw Hill New York, 1995)

  29. K.L. Ngai, R.W. Rendell, J. NonCryst. Solids 131–133(2), 942 (1991)

    Article  Google Scholar 

  30. V.Y. Kramarenko, T.A. Ezquerra, I. Sics, V. Balta Calleja, V.P. Privalko, J. Chem. Phys. 113(1), 447 (2000)

    Article  Google Scholar 

  31. F. Kohler, U.S. Patent 3454279 243, 753. (1966)

  32. H. Hammami, M. Arous, M. Lagache, A. Kallel, J. Alloys Compd. 430(1–2), 1 (2007)

    Article  Google Scholar 

  33. A. Paul, S. Thomas, J. Appl. Polym. Sci. 63(2), 247 (1997)

    Article  Google Scholar 

  34. W.K. Sakamoto, D.H.F. Kanda, F. Andrade, D.K. Das Gupta, J. Mater. Sci. 38(7), 1465 (2003)

    Article  Google Scholar 

  35. N. Sivakumar, A. Narayanasamy, N. Ponpandianb, J. Appl. Phys. 101, 084116 (2007)

    Article  Google Scholar 

  36. M. Sluyters Rehbach, J.H. Sluyters, Electroanal. Chem. 1, 4 (1970)

    Google Scholar 

  37. B. Boonstra, in Rubber Technology, 2nd edn. (Van Nostrand, London, 1970), p. 51

  38. M.E. Leyva, G.M.O. Barra, A.C.F. Moreira, B.G. Soares, D. Khastgir, J. Polym. Sci. B Polym. Phys. 41(22), 2983 (2003)

    Article  Google Scholar 

  39. J. Plocharski, W. Wieczoreck, Solid State Ion. 28–30(2), 1979 (1988)

    Google Scholar 

  40. R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhury, J. Mater. Sci. Mater. Electron. 23(4), 1688 (2012)

    Article  Google Scholar 

  41. R. Rajiv, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloys Compd 509, 6388 (2011)

    Article  Google Scholar 

  42. H. Fukushima, L.T. Drzal, NSTI Nanotechnology Conference and Trade Show—NSTI Nanotech Technical Proceedings, vol 1 (2006), p. 282

  43. I. PeBech, A. Kaczmarek, R. PeBech, J. Nanomater. Article ID 405345, 7 pages (2015). doi:10.1155/2015/405345

  44. D. Jinhong, Z. Long, Y. Zeng, L. Zhang, L. Feng, P. Liu, L. Chang, Carbon 49, 1094 (2011)

    Article  Google Scholar 

  45. B. Mattson, B. Stenberg, Rubber Chem. Technol. 65(2), 315 (1992)

    Article  Google Scholar 

  46. K. Sau, Ph.D. Thesis, Rubber Technology Center, Indian Institute of Technology, Kharagpur (1999)

  47. M. Amin, G.M. Nasr, M.S. Sobhy, J. Mater. Sci. 26(17), 4615 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Lanxess India for supplying EVA for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nimai C. Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, B.K., Achary, P.G.R. & Nayak, N.C. Dielectric relaxation behaviour of ethylene-vinyl acetate–exfoliated graphene nanoplatelets (xGnP) composites. J Mater Sci: Mater Electron 26, 7244–7254 (2015). https://doi.org/10.1007/s10854-015-3351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3351-2

Keywords

Navigation