Facile synthesis of electromagnetic Ni@glass fiber composites via electroless deposition method

  • Ruihua Zhou
  • Huiyu Chen
  • Chunju XuEmail author
  • Xin Hou
  • Guilin Liu
  • Yaqing Liu


Electromagnetic Ni@glass fiber composite with perfect Ni layers were successfully obtained by a versatile electroless deposition method. Glass fibers were firstly pretreated by roughing, sensitization, and activation. Then the glass fibers after pretreatment were conducted the electroless nickel process. We have investigated the influence of bath solution parameters on the morphology, chemical composition, magnetic property, and conductivity of the Ni@glass fiber composites using scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry, transmission electron microscope, and four-probe meter techniques, respectively. The deposited nickel coatings and volume resistivity of the obtained samples were dependent on the bath temperature, pH value, dosage of complexing agent and reductant. Uniform and compact Ni film could be deposited on the surface of glass fibers, with which the optimal volume resistivity could reach (7.36 ± 0.37) × 10−3 Ω cm, and the saturation magnetization (M s ) and coercivity (H c ) were confirmed to be 3.0 emu/g and 164.5 Oe, respectively. The current synthetic process may prompt the applicability in electromagnetic shielding field with industrial scale production.


Glass Fiber Fiber Composite Nickel Particle Electroless Plating Nickel Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by High-level Scientific Research Foundation for the Introduction of Talent through North University of China.


  1. 1.
    W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, L.Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Kwon, R.J. Ma, U. Kim, H.R. Choi, S. Baik, Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon 68, 118–124 (2014)CrossRefGoogle Scholar
  3. 3.
    X.M. Liu, X.W. Yin, L. Kong, Q. Li, Y. Liu, W.Y. Duan, L.T. Zhang, L.F. Cheng, Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon 68, 501–510 (2014)CrossRefGoogle Scholar
  4. 4.
    G. Sreenivasulu, M. Popov, R. Zhang, K. Sharma, C. Janes, A. Mukundan, G. Srinivasan, Magnetic field assisted self-assembly of ferrite–ferroelectric core–shell nanofibers and studies on magneto–electric interactions. Appl. Phys. Lett. 104, 052910 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Salavati-Niasari, J. Javidi, Synthesis of hollow SiO2 nanoparticles from Dy2O3@SiO2 core–shell nanocomposites via a recyclable sonochemical method. J. Clust. Sci. 23, 1019–1028 (2012)CrossRefGoogle Scholar
  6. 6.
    V. Mancier, C.R. Bertrand, J. Dille, J. Michel, P. Fricoteaux, Sono and electrochemical synthesis and characterization of copper core–silver shell nanoparticles. Ultrason. Sonochem. 17, 690–696 (2010)CrossRefGoogle Scholar
  7. 7.
    K.L. Mcgilveray, C. Fasciani, C.J.B. Alejo, R.S. Narbonne, J.C. Scaiano, Photochemical strategies for the seed-mediated growth of gold and gold–silver nanoparticles. Langmuir 28, 16148–16155 (2012)CrossRefGoogle Scholar
  8. 8.
    K.J. Lin, H.M. Wu, Y.H. Yu, C.Y. Ho, M.H. Wei, F.H. Lu, W.J. Tseng, Preparation of PMMA-Ni core–shell composite particles by electroless plating on polyelectrolyte-modified PMMA beads. Appl. Surf. Sci. 282, 741–745 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Uysal, R. Karslioğlu, A. Alp, H. Akbulut, The preparation of core–shell Al2O3/Ni composite powders by electroless plating. Ceram. Int. 39, 5485–5493 (2013)CrossRefGoogle Scholar
  10. 10.
    W.Z. Li, T. Qiu, L.L. Wang, S.S. Ren, J.R. Zhang, L.F. He, X.Y. Li, Preparation and electromagnetic properties of core/shell polystyrene polypyrrole Nickel composite microspheres. ACS Appl. Mater. Interfaces 5, 883–891 (2013)CrossRefGoogle Scholar
  11. 11.
    X.J. Tang, C.L. Bi, C.X. Han, B.G. Zhang, A new palladium-free surface activation process for Ni electroless plating on ABS plastic. Mater. Lett. 63, 840–842 (2009)CrossRefGoogle Scholar
  12. 12.
    Y.X. Lu, L.L. Xue, F. Li, Silver nanoparticle catalyst for electroless Ni deposition and the promotion of its adsorption onto PET substrate. Surf. Coat. Tech. 205, 519–524 (2010)CrossRefGoogle Scholar
  13. 13.
    J.L. Jiang, H.Q. Lu, L.X. Zhang, N.P. Xu, Preparation of monodisperse Ni/PS spheres and hollow nickel spheres by ultrasonic electroless plating. Surf. Coat. Tech. 201, 7174–7179 (2007)CrossRefGoogle Scholar
  14. 14.
    D. Dong, X.H. Chen, W.T. Xiao, G.B. Yang, P.Y. Zhang, Preparation and properties of electroless Ni–P–SiO2 composite coatings. Appl. Surf. Sci. 255, 7051–7055 (2009)CrossRefGoogle Scholar
  15. 15.
    L.M. Luo, Z.L. Lu, X.Y. Tan, X.Y. Ding, L.M. Huang, J.G. Cheng, L. Zhu, Y.C. Wu, A specific chemical activation pretreatment for electroless nickel plating on SiC ceramic powders. Powder Technol. 249, 431–435 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Uysal, R. Karslioğlu, A. Alp, H. Akbulut, Nanostructured core–shell Ni deposition on SiC particles by alkaline electroless coating. Appl. Surf. Sci. 257, 10601–10606 (2011)CrossRefGoogle Scholar
  17. 17.
    S.C. Tjong, S.A. Xu, Y.W. Mai, Impact fracture toughness of short glass fiber-reinforced polyamide 6, 6 hybrid composites containing elastomer particles using essential work of fracture concept. Mater. Sci. Eng. A 347, 338–345 (2003)CrossRefGoogle Scholar
  18. 18.
    K. Wang, J.S. Wu, H.M. Zeng, Microstructures and fracture behavior of glass-fiber reinforced PBT/PC/E-GMA elastomer blends-1: microstructures. Compos. Sci. Technol. 61, 1529–1538 (2001)CrossRefGoogle Scholar
  19. 19.
    C. Kaynak, A. Arikan, T. Tincer, Flexibility improvement of short glass fiber reinforced epoxy by using a liquid elastomer. Polymer 44, 2433–2439 (2003)CrossRefGoogle Scholar
  20. 20.
    H.B. Zhang, W.L.X.J. Yang, L.D. Lu, X. Wang, X.D. Sun, Y.C. Zhang, Development of polyurethane elastomer composite materials by addition of milled fiberglass with coupling agent. Mater. Lett. 61, 1358–1362 (2007)CrossRefGoogle Scholar
  21. 21.
    Y. Huang, K. Shi, Z.J. Liao, Y.L. Wang, L. Wang, F. Zhu, Studies of electroless Ni–Co–P ternary alloy on glass fibers. Mater. Lett. 61, 1742–1746 (2007)CrossRefGoogle Scholar
  22. 22.
    W.F. Lien, P.C. Huang, S.C. Tseng, C.H. Cheng, S.M. Lai, W.C. Liaw, Electroless silver plating on teraaethoxy silane-bridged fiber glass. Appl. Surf. Sci. 258, 2246–2254 (2012)CrossRefGoogle Scholar
  23. 23.
    C.J. Xu, G.L. Liu, H.Y. Chen, R.H. Zhou, Y.Q. Liu, Fabrication of conductive copper-coated glass fibers throughelectroless plating process. J. Mater. Sci.: Mater. Electron. 25, 2611–2617 (2014)Google Scholar
  24. 24.
    A. Bouremana, A. Guittoum, M. Hemmous, B. Rahal, J.J. Sunol, D. Martínez-Blanco, J.A. Blanco, P. Gorria, N. Benrekaa, Crystal structure, microstructure and magnetic properties of Ni nanoparticles elaborated by hydrothermal route. J. Magn. Magn. Mater. 358–359, 11–15 (2014)CrossRefGoogle Scholar
  25. 25.
    H.Y. Chen, C.J. Xu, C. Chen, G.Z. Zhao, Y.Q. Liu, Flower-like hieraichical nickel microstructures: Facile synthesis, growth mechanism, and their magnetic properties. Mater. Res. Bull. 47, 1839–1844 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ruihua Zhou
    • 1
  • Huiyu Chen
    • 1
  • Chunju Xu
    • 1
    Email author
  • Xin Hou
    • 1
  • Guilin Liu
    • 1
  • Yaqing Liu
    • 1
  1. 1.School of Materials Science and EngineeringNorth University of ChinaTaiyuanPeople’s Republic of China

Personalised recommendations