Skip to main content
Log in

TiO2 hybrid polypropylene/nickel coated glass fiber conductive composites for highly efficient electromagnetic interference shielding

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A highly efficient electromagnetic interference shielding composite based on nickel coated glass fibers (NCGFs) and titanium dioxide (TiO2) filled polypropylene (PP) is fabricated via the simple melt blending method. Superior shielding effectiveness of 44.5 dB can be achieved with only 1.12 vol% Ni and 0.8 vol% TiO2 loadings owning to the well-formed conductive network and interfacial polarization effect of TiO2. The conductive Ni layer coating on the surface of glass fibers constructs an efficient conductive network due to its interfacial distribution between GF and PP. This interconnected Ni network provides fast electron transport channels to absorb the electromagnetic waves. Meanwhile, TiO2 dispersed among the network of NCGFs induces more interfacial polarization, and thus produces a synergistic effect to enhance the shielding effectiveness of composite. Such composite would be considered as a promising electromagnetic shielding material in aerospace and electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Ameli, P.U. Jung, C.B. Park, Carbon 60, 379–391 (2013)

    Article  Google Scholar 

  2. H.B. Zhang, Q. Yan, W.G. Zheng, Z. He, Z.Z. Yu, ACS Appl. Mater. Interface 3, 918–924 (2011)

    Article  Google Scholar 

  3. D.X. Yan, P.G. Ren, H. Pang, Q. Fu, M.B. Yang, Z.M. Li, J. Mater. Chem. 22, 18772–18774 (2012)

    Article  Google Scholar 

  4. A. Gupta, S. Varshney, A. Goyal, P. Sambyal, B.K. Gupta, S.K. Dhawan, Mater. Lett. 158, 167–169 (2015)

    Article  Google Scholar 

  5. S. Varshney, A. Ohlan, V.K. Jain, V.P. Dutta, S.K. Dhawan, Mater. Chem. Phys. 143, 806–813 (2014)

    Article  Google Scholar 

  6. K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney. Nanoscale 5, 2411–2420 (2013)

    Article  Google Scholar 

  7. J.J. Ma, M.S. Zhan, K. Wang, ACS Appl. Mater. Interface 7, 563–576 (2015)

    Article  Google Scholar 

  8. M.J. Hu, J.F. Gao, Y.C. Dong, K. Li, G.C. Shan, S.L. Yang, R.K. Li, Langmuir 28, 7101–7106 (2012)

    Article  Google Scholar 

  9. D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, Z.M. Li, Adv. Funct. Mater. 25, 559–566 (2015)

    Article  Google Scholar 

  10. J.W. Wang, M. Wu, Y.H. Li, F. Luo, F. Chen, S.G. Chai, Q. Fu, J. Mater. Sci. 48, 1932–1939 (2013)

    Article  Google Scholar 

  11. J.Q. Ling, W.T. Zhai, W.W. Feng, B. Shen, J.F. Zhang, W.G. Zheng, ACS Appl. Mater. Interface 5, 2677–2684 (2013)

    Article  Google Scholar 

  12. S.M. Zhang, H. Deng, Q. Zhang, Q. Fu, ACS Appl. Mater. Interface 6, 6835–6844 (2014)

    Article  Google Scholar 

  13. A.V. Kyrylyuk, M.C. Hermant, T. Schilling, B. Klumperman, C.E. Koning, P. Schoot, Nat. Nanotechnol. 6, 364–369 (2011)

    Article  Google Scholar 

  14. M. Yoonessi, J.R. Gaier, ACS Nano 4, 7211–7220 (2010)

    Article  Google Scholar 

  15. Y.H. Zhan, M. Lavorgna, G. Buonocore, H.S. Xia, J. Mater. Chem. 22, 10464–10468 (2012)

    Article  Google Scholar 

  16. G.A. Gelves, M.H. Al-Saleh, U. Sundararaj, J. Mater. Chem. 21, 829–836 (2011)

    Article  Google Scholar 

  17. J. Chen, Y.Y. Shi, J.H. Yang, N. Zhang, T. Huang, C. Chen, Y. Wang, Z.W. Zhou, J. Mater. Chem. 22, 22398–22404 (2012)

    Article  Google Scholar 

  18. J.H. Huang, C. Mao, Y.T. Zhu, W. Jiang, X.D. Yang, Carbon 73, 267–274 (2014)

    Article  Google Scholar 

  19. H. Deng, L. Lin, M.Z. Ji, S.M. Zhang, M.B. Yang, Q. Fu, Prog. Polym. Sci. 39, 627–655 (2014)

    Article  Google Scholar 

  20. M.M. Momeni, Y. Ghayeb, J. Mater. Sci. 27, 3318–3327 (2016)

    Google Scholar 

  21. M.M. Momeni, Y. Ghayeb, J. Alloys Compd. 637, 393–400 (2015)

    Article  Google Scholar 

  22. M.M. Momeni, Appl. Surf. Sci. 357, 160–166 (2015)

    Article  Google Scholar 

  23. C. Guo, H.J. Duan, C.Y. Dong, G.Z. Zhao, Y.Q. Liu, Y.Q. Yang, Mater. Lett. 143, 124–127 (2015)

    Article  Google Scholar 

  24. Y.Q. Yang, T.T. Hou, C.Y. Dong, H.J. Duan, G.Z. Zhao, Y.Q. Liu, J. Polym. Res. 23, 165 (2016)

    Article  Google Scholar 

  25. T.K. Gupta, B.P. Singh, S.R. Dhakate, V.N. Singh, R.B. Mathur, J. Mater. Chem. A 1, 9138–9149 (2013)

    Article  Google Scholar 

  26. S.S. Tzeng, F.Y. Chang, Mater. Sci. Eng. 302, 258–267 (2001)

    Article  Google Scholar 

  27. S. Kirkpatrick, Rev. Mod. Phys. 45, 574–588 (1973)

    Article  Google Scholar 

  28. J.H. Du, L. Zhao, Y. Zeng, L.L. Zhang, F. Li, P.F. Liu, C. Liu, Carbon 49, 1094–1100 (2011)

    Article  Google Scholar 

  29. T.W. Yoo, Y.K. Lee, S.J. Lim, H.G. Yoon, W.N. Kim, J. Mater. Sci. 49, 1701–1708 (2014)

    Article  Google Scholar 

  30. H.D. Huang, C.Y. Liu, D. Zhou, X. Jiang, G.J. Zhong, D.X. Yan, Z.M. Li, J. Mater. Chem. A. 3, 4983–4991 (2015)

    Article  Google Scholar 

  31. L.C. Jia, D.X. Yan, C.H. Cui, X. Jiang, X. Ji, Z.M. Li, Macromol. Mater. Eng. 301, 1232–1241 (2016)

    Article  Google Scholar 

  32. S.T. Hsiao, C.C.M. Ma, W.H. Liao, Y.S. Wang, S.M. Li, Y.C. Huang, R.B. Yang, W.F. Liang, ACS Appl. Mater. Interface 6, 10667–10678 (2014)

    Article  Google Scholar 

  33. M.M. Momeni, I. Ahadzadeh, Mater. Res. Innov. 20, 44–45 (2016)

    Article  Google Scholar 

  34. M.M. Momeni, M. Mirhosseini, M. Ghavoshi, Ceram. Int 42, 9133–9138 (2016)

    Article  Google Scholar 

  35. S.K. Dhawan, K. Singh, A.K. Bakhshi, A. Ohlan, Synth Metals 159, 2259–2262 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this work by Natural Science Foundation of Shanxi Province (No. 2014021018-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaqi Yang or Yaqing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Yang, J., Yang, Y. et al. TiO2 hybrid polypropylene/nickel coated glass fiber conductive composites for highly efficient electromagnetic interference shielding. J Mater Sci: Mater Electron 28, 5725–5732 (2017). https://doi.org/10.1007/s10854-016-6244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6244-0

Keywords

Navigation