Skip to main content
Log in

Electromagnetic and microwave properties of NiFe/NiFeO multilayer thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, [NiFe/NiFeO]10 multilayer thin films were fabricated by magnetron sputtering. The microwave and electromagnetic properties were investigated for different thicknesses, t, of the NiFeO layer (t = 0–6 nm) while the thickness of the NiFe was maintained at 8 nm in every cycle. A clear in-plane uniaxial anisotropy field was induced by an external magnetic field. The in-plane uniaxial anisotropy can be adjusted by tailoring the thickness of the NiFeO layer. When t = 0 nm, the NiFe monolayer, which has a thickness of 80 nm, showed low resistivity (ρ) and ferromagnetic resonance frequency (f r ). By increasing the t from 0 to 6 nm, the ρ of the [NiFe/NiFeO]10 films exhibited a significant monotonic increase (from 111.2 to 268.8 μΩ cm), the f r rose from 1.07 to 2.85 GHz, and the saturation magnetization (4πM s ) was decreased from 12.7 to 10.8 kG. The real part (μ′) of the complex permeability is larger than 100 in the range 0.2–1.9 GHz and the damping coefficient (α eff ) increases to 0.078 for t = 6 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.L. Xia, S.K. Liu, C.G. Jin, S.B. Su, J. Mater. Sci. Mater. Electron. 23, 4166 (2013)

    Article  Google Scholar 

  2. G. Perrin, O. Acher, J.C. Peuzin, N. Vukadinovic, J. Magn. Magn. Mater. 157, 289 (1996)

    Article  Google Scholar 

  3. C. Kittel, J. Phys. Rev. 73, 155 (1948)

    Article  Google Scholar 

  4. Y. Liu, C.Y. Tan, Z.W. Liu, C.K. Ong, J. Appl. Phys. 101, 023912 (2007)

    Article  Google Scholar 

  5. S. Ohnuma, T. Iwasa, H. Fujimori, T. Masumoto, J. IEEE Trans. Magn. 42, 2769 (2006)

    Article  Google Scholar 

  6. S.R. Jigajeni, M.M. Sutar, S.M. Salunkhe, P.B. Joshi, J. Mater. Sci. Mater. Electron. 23, 1678 (2012)

    Article  Google Scholar 

  7. S. Sharma, V. Singh, R.K. Kotnala, R.K. Dwivedi, J. Mater. Sci. Mater. Electron. 25, 1915 (2014)

    Article  Google Scholar 

  8. B. Koo, B. Yoo, J. Surf. Coat. Technol. 205, 740 (2010)

    Article  Google Scholar 

  9. E.I. Cooper, C. Bonhote, J. Heidmann, Y. Hsu, P. Kern, J.W. Lam, M. Ramasubramanian, N. Robertson, L.T. Romankiw, J. IBM Res. Dev. 49, 103 (2005)

    Article  Google Scholar 

  10. T. Osaka, T. Asahi, J. Kawaji, T. Yokoshima, J. Electrochim. Acta 50, 4576 (2005)

    Article  Google Scholar 

  11. T. Dastagir, W. Xu, S. Sinha, H. Wu, Y. Cao, H. Yu, J. Appl. Phys. Lett. 97, 162506 (2010)

    Article  Google Scholar 

  12. T. O’Donnell, N. Wang, S. Kulkarni, R. Meere, F.M.F. Rhen, S. Roy, S.C. O’Mathuna, J. Magn. Magn. Mater. 322, 1690 (2010)

    Article  Google Scholar 

  13. C. Jiang, D. Xue, W. Sui, J. Thin Solid Films 519, 2527 (2011)

    Article  Google Scholar 

  14. X. Yang, J.Q. Wei, X.H. Li, L.Q. Gong, T. Wang, F.S. Li, J. Phys. B 407, 555 (2012)

    Article  Google Scholar 

  15. L.X. Phua, N.N. Phuoc, C.K. Ong, J. Alloys Comp. 520, 132 (2012)

    Article  Google Scholar 

  16. L.X. Phua, N.N. Phuoc, C.K. Ong, J. Alloys Comp. 543, 1 (2012)

    Article  Google Scholar 

  17. Y.P. Wu, B.Y. Zong, B.N. Wei, Z.W. Li, J. IEEE Trans. Magn. 50, 1 (2014)

    Google Scholar 

  18. H. Geng, J.Q. Wei, Z.W. Wang, J. Alloys Comp. 576, 13 (2013)

    Article  Google Scholar 

  19. A. Neudert, J. McCord, R. Schafer, L. Schultz, J. Appl. Phys. 95, 6595 (2004)

    Article  Google Scholar 

  20. H. Geng, Y. Wang, J.B. Wang, Z.Q. Li, S.J. Nie, L.S. Wang, Y. Chen, D.L. Peng, H.L. Bai, J. Mater Lett. 67, 99 (2012)

    Article  Google Scholar 

  21. P.C. Fannin, C.N. Marin, I. Malaescu, J. Phy, Condens. Matter. 15, 4739 (2003)

    Article  Google Scholar 

  22. T.L. Gilbert, J. IEEE Trans. Magn. 40, 3443 (2004)

    Article  Google Scholar 

  23. L. Landao, E. Lifshits, J. Phy, Z. Sowjetunion. 8, 153 (1935)

    Google Scholar 

  24. N.N. Phuoc, C.K. Ong, J. Phys. B 406, 3514 (2011)

    Article  Google Scholar 

  25. R.L. Rodrıguez-Suazez, L.H. Vilela-Leao, T. Bueno, A.B. Oliveira, J.R.L. de Almeida, P. Landeros, S.M. Rezende, A. Azevedo, J. Phys. Rev. B 83, 224418 (2011)

    Article  Google Scholar 

  26. H.Y. Chen, N.N. Phuoc, C.K. Ong, J. Appl. Phys. 112, 053920 (2012)

    Article  Google Scholar 

  27. S. Ge, S. Yao, M. Yamaguchi, X. Yang, H. Zuo, T. Ishii, D. Zhou, F. Li, J. Phys. D Appl. Phys. 40, 3660 (2007)

    Article  Google Scholar 

  28. N.N. Phuoc, H.Y. Chen, C.K. Ong, J. Appl. Phys. 113, 063913 (2013)

    Article  Google Scholar 

  29. N.N. Phuoc, L.T. Hung, C.K. Ong, J. Alloys Compd. 506, 504 (2010)

    Article  Google Scholar 

  30. B.C. Craus, G. Palasantzas, A.R. Chezan, O.D. Boerma, L. Niesen, J. Appl. Phys. 97, 013904 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education for providing the Vector Network Analyzer measurement. This work was supported by the Program for New Century Excellent Talents in University (No. MCET-11-1061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Dai, B., Ren, Y. et al. Electromagnetic and microwave properties of NiFe/NiFeO multilayer thin films. J Mater Sci: Mater Electron 26, 2931–2936 (2015). https://doi.org/10.1007/s10854-015-2779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2779-8

Keywords

Navigation