Skip to main content
Log in

Comparative investigations on dielectric, piezoelectric properties and humidity resistance of PZT–SKN and PZT–SNN ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sodium was used to substituted for potassium in Pb(Zr0.53,Ti0.47)O3–Sr(K0.25,Nb0.75)O3 (PZT–SKN) based on the lead-free (Na0.5K0.5)NbO3 (KNN) piezoelectric ceramic and a new ceramic material Pb(Zr0.53,Ti0.47)O3–Sr(Na0.25,Nb0.75)O3 (PZT–SNN) was developed in order to improve the humidity resistance. PZT–SKN and PZT–SNN ceramics have been fabricated by the conventional solid-state reaction method at the sintering temperature of 1,150–1,225 °C for 2 h. The effects of SKN and SNN on the microstructure, piezoelectric properties and humidity resistance of the prepared ceramics have been systematically investigated and compared. The phase structures of the two ceramics are both tetragonal. With increasing of SKN/SNN, both the grain size and Curie temperature decrease. Among all compositions studied, the 0.99PZT–0.01SKN and 0.98PZT–0.02SNN sintered at 1,175 °C exhibited optimal comprehensive properties. Especially, the PZT–SNN has a higher humidity resistance than PZT–SKN. The optimal values of d 33, kp, ε r and Tc for 0.98PZT–0.02SNN is 448pC/N, 0.63, 2,126.32 and 354 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Pereira, A.G. Peixoto, M.J.M. Gomes, Effect of Nb doping on the microstructural and electrical properties of the PZT ceramics. J. Eur. Ceram. Soc. 21, 1353–1356 (2001)

    Article  Google Scholar 

  2. D.D. Wan, Q. Li, J.Y. Choi, J.W. Choi, Y. Yang, S.J. Yoon, Low-temperature sintered Pb(Zr, Ti)O3–Pb(Mn, Sb)O3–Pb(Zn, Nb)O3 for multilayer ceramic actuators. Jpn. J. Appl. Phys. 49, 071503 (2010)

    Article  Google Scholar 

  3. L. Qiu, S.F. Yuan, X.L. Shi, T.X. Huang, Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability. Smart Mater. Struct. 21, 075032 (2012)

    Article  Google Scholar 

  4. C.A. Randall, A. Kelnberger, G.Y. Yang, R.E. Eitel, T.R. Shrout, High strain piezoelectric multilayer actuators—a material science and engineering challenge. J. Electroceram. 14, 177–191 (2005)

    Article  Google Scholar 

  5. N.J. Donnelly, T.R. Shrout, C.A. Randall, Addition of a Sr, K, Nb (SKN) combination to PZT(53/47) for high strain applications. J. Am. Ceram. Soc. 90, 490–495 (2007)

    Article  Google Scholar 

  6. B.S. Li, G.R. Li, S.C. Zhao, L.N. Zhang, A.L. Ding, Characterization of the high-power piezoelectric properties of PMnN–PZT ceramics using constant voltage and pulse drive methods. J. Phys. D Appl. Phys. 38, 2265–2270 (2005)

    Article  Google Scholar 

  7. F. Gao, L.H. Cheng, R.Z. Hong, J.J. Liu, C.J. Wang, C.S. Tian, Crystal Structure and Piezoelectric Properties of xPb(Mn1/3Nb2/3)O3–(0.2 − x)Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr0.52Ti0.48)O3 Ceramics. Ceram. Int. 35, 1719–1723 (2009)

    Article  Google Scholar 

  8. G. Helke, S. Seifert, S.J. Cho, Phenomenological and structural properties of piezoelectric ceramics based on xPb(Zr, Ti)O3–(1 – x)Sr(K0.25, Nb0.75)O3 (PZT/SKN) solid solutions. J. Eur. Soc. 19, 1265–1268 (1999)

    Google Scholar 

  9. D. Yuan, Y. Yang, Q. Hu, Y. Wang, Structures and properties of Pb(Zr0.5Ti0.5)O3–Pb(Zn1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3 ceramics for energy harvesting devices. J. Am. Soc. 97(12), 3999–4004 (2014)

    Google Scholar 

  10. R.A. Langman, R.B. Runk, S.R. Butler, Isothermal grain growth of pressure-sintered PLZT ceramics. J. Am. Soc. 56, 486–488 (1973)

    Google Scholar 

  11. N. Kim, Grain size effect on the dielectric and piezoelectric properties in compositions which are near the morphotropic phase boundary of lead zirconate-titanate based ceramics, Ph.D. thesis, The Pennsylvania State University, 1994

  12. C.A. Randall, N. Kim, J.P. Kucera, W.W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Soc. 81, 677–688 (1998)

    Google Scholar 

  13. R.J. Brook, The impurity-drag effect and grain growth kinetics. Scripta Metall. 2, 375–378 (1968)

    Article  Google Scholar 

  14. N.J. Donnelly, T.R. Shrout, C.A. Randall, Properties of (1 − x)PZT–xSKN ceramics sintered at low temperature using Li2CO3. J. Am. Soc. 91, 2182–2188 (2008)

    Google Scholar 

  15. R.B. Atkin, R.M. Fulrath, Point defects and sintering of lead zirconate–titanate. J. Am. Soc. 54, 265–270 (1971)

    Google Scholar 

  16. T.C. Che, C.S. Yuan, L.C. Hsien, Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on saw device. Sens. Actuators A 113, 198–203 (2004)

    Article  Google Scholar 

  17. M.N. Rahaman, Ceramic processing and sintering (CRC Press, Boca Raton, 2003)

    Google Scholar 

  18. G. Srivastava, A. Goswami, A.M. Umarji, Temperature dependent structural and dielectric investigations of PbZr0.5Ti0.5O3 solid solution at the morphotropic phase boundary. Ceram. Int. 39, 1977–1983 (2013)

    Article  Google Scholar 

  19. K. Volkan, C. Ibrahim, T. Muharrem, Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum. Ceram. Int. 37, 1265–1275 (2011)

    Article  Google Scholar 

  20. M.M.S. Pojucan, M.C.C. Santos, F.R. Pereira, M.A.S. Pinheiro, M.C. Andrade, Piezoelectric properties of pure and (Nb5+ + Fe3+) doped PZT ceramics. Ceram. Int. 36, 1851–1855 (2010)

    Article  Google Scholar 

  21. W.L. Zhang, R.E. Eitel, Low-temperature sintering and properties of 0.98PZT–0.02SKN ceramics with LiBiO2 and CuO addition. J. Am. Soc. 94, 3386–3390 (2011)

    Google Scholar 

  22. Volkan Kalem, Muharrem Timucin, Structural, piezoelectric and dielectric properties of PSLZT–PMnN ceramics. J. Eur. Ceram. Soc. 33, 105–111 (2013)

    Article  Google Scholar 

  23. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Amademic Press, NewYork, 1971)

    Google Scholar 

  24. H. Zheng, I.M. Reaney, W.E. Lee, Effects of strontium substitution in Nb-doped PZT ceramics. J. Eur. Ceram. Soc. 21, 1371–1375 (2001)

    Article  Google Scholar 

  25. Vladimir Koval, Carlos Alemany, Jaroslav Briancin, Helena Brunckova, Dielectric properties and phase transition behavior of xPMN–(1 − x)PZT ceramic systems. J. Electroceram. 10, 19–29 (2003)

    Article  Google Scholar 

  26. L.M. Zheng, J.F. Wang, C.M. Wang, Thermal stability and humidity resistance of ScTaO4 Modified (K0.5Na0.5)NbO3 ceramics. Chin. Phys. Lett. 26, 127701 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (11372133), NUAA Fundamental Funds (NS2013008), Fundamental Research Funds for the Central Universities (NJ20140012), The State Key Laboratory Program under Grant (MCMS-0514K01), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhao Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Qiu, J., Ji, H. et al. Comparative investigations on dielectric, piezoelectric properties and humidity resistance of PZT–SKN and PZT–SNN ceramics. J Mater Sci: Mater Electron 26, 2897–2904 (2015). https://doi.org/10.1007/s10854-015-2775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2775-z

Keywords

Navigation