Skip to main content
Log in

Fe3O4@titanate nanocomposites: novel reclaimable adsorbents for removing radioactive ions from wastewater

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fabrication of reclaimable adsorbents without secondary pollution caused by dust pollution is a challenge in the field of nuclear wastewater purification and emergency treatment. In this study, novel core–shell Fe3O4@titanate nanocomposites were successfully developed to meet the demanding requirements for quickly removing the radioactive ions within only a few hours from the simulation nuclear leakage water. Adsorption experiments demonstrate that the Fe3O4@titanate nanomaterials can be regarded as efficient adsorbents with the saturated sorption capacity as high as 118.4 mg/g for Ba2+ ions. And the fast adsorption process can guarantee that the radioactive polluted water can be recovered within only few hours after a nuclear leakage. Moreover, the novel materials could be fully reclaimed by virtue of the magnetic recycling equipment because of their magnetic nature. The results demonstrate the Fe3O4@titanate nanomaterials can be used as a promising emergency radioactive adsorbent after a nuclear leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Nair, F. Sunny, M. Chopra, L. Sharma, V. Puranik, A. Ghosh, Environ. Earth Sci. 71, 1007 (2014)

    Article  Google Scholar 

  2. A. Adamantiades, I. Kessides, Energy Policy 37, 5149 (2009)

    Article  Google Scholar 

  3. A. Hosseini, J.E. Brown, J.P. Gwynn, M. Dowdall, Sci. Total Environ. 438, 325 (2012)

    Article  Google Scholar 

  4. H. Jeong, W. Hwang, E. Kim, M. Han, Radiat. Prot. Dosim. 146, 54 (2011)

    Article  Google Scholar 

  5. S. Yan, M. Zhao, G. Lei, Y. Wei, J. Appl. Polym. Sci. 125, 382 (2012)

    Article  Google Scholar 

  6. S. Wu, F. Li, R. Xu, S. Wei, H. Wang, Mater. Lett. 64, 1295 (2010)

    Article  Google Scholar 

  7. L. Hu, J.Y. Mei, Q.W. Chen, P. Zhang, N. Yan, Nanoscale 3, 4270 (2011)

    Article  Google Scholar 

  8. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Chem. Rev. 112, 6156 (2012)

    Article  Google Scholar 

  9. Z. Ma, L. Zhu, S. Xing, Y. Wu, Y. Gao, Mater. Lett. 108, 261 (2013)

    Article  Google Scholar 

  10. Y. Yang, Y. Zhuang, Y. He, B. Bai, X. Wang, Nano Res. 3, 581 (2010)

    Article  Google Scholar 

  11. B. Li, J. Liao, J. Wu, D. Zhang, J. Zhao, Y. Yang, Q. Cheng, Y. Feng, N. Liu, Nucl. Sci. Technol. 19, 88 (2008)

    Article  Google Scholar 

  12. X.Y. Yu, T. Luo, Y. Jia, R.X. Xu, C. Gao, Y.X. Zhang, J.H. Liu, X.J. Huang, Nanoscale 4, 3466 (2012)

    Article  Google Scholar 

  13. K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim, Nanoscale 5, 3149 (2013)

    Article  Google Scholar 

  14. V. Chandra, K.S. Kim, Chem. Commun. 47, 3942 (2011)

    Article  Google Scholar 

  15. V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, K.S. Kim, ACS Nano 4, 3979 (2010)

    Article  Google Scholar 

  16. H. Jabeen, V. Chandra, S. Jung, J.W. Lee, K.S. Kim, S.B. Kim, Nanoscale 3, 3583 (2011)

    Article  Google Scholar 

  17. M. Xu, G. Wei, S. Li, X. Niu, H. Chen, H. Zhang, M. Chubik, A. Gromov, W. Han, J. Nanosci. Nanotechnol. 12, 6374 (2012)

    Article  Google Scholar 

  18. D. Yang, H. Liu, Z. Zheng, S. Sarina, H. Zhu, Nanoscale 5, 2232 (2013)

    Article  Google Scholar 

  19. D. Yang, S. Sarina, H. Zhu, H. Liu, Z. Zheng, M. Xie, S.V. Smith, S. Komarneni, Angew. Chem. Int. Ed. 50, 10594 (2011)

    Article  Google Scholar 

  20. D. Yang, Z. Zheng, H. Liu, H. Zhu, X. Ke, Y. Xu, D. Wu, Y. Sun, J. Phys. Chem. C 112, 16275 (2008)

    Article  Google Scholar 

  21. D. Yang, Z. Zheng, Y. Yuan, H. Liu, E.R. Waclawik, X. Ke, M. Xie, H. Zhu, Phys. Chem. Chem. Phys. 12, 1271 (2010)

    Article  Google Scholar 

  22. D.J. Yang, Z.F. Zheng, H.Y. Zhu, H.W. Liu, X.P. Gao, Adv. Mater. 20, 2777 (2008)

    Article  Google Scholar 

  23. Y. Masuda, Nanofabrication of Metal Oxide Nanostructures in Aqueous Solutions (InTech Shimoshidami, Moriyama-ku, Nagoya, 2011), pp. 121–125

    Google Scholar 

  24. M. Xu, G. Wei, N. Liu, L. Zhou, C. Fu, M. Chubik, A. Gromov, W. Han, Nanoscale 6, 722 (2014)

    Article  Google Scholar 

  25. T. Chen, X. Zhang, J. Qian, S. Li, X. Jia, H.-J. Song, J. Mater. Sci. Mater. Electron. 25, 1381 (2014)

    Article  Google Scholar 

  26. T. Chen, J. Qiu, K. Zhu, Y. Che, Y. Zhang, J. Zhang, H. Li, F. Wang, Z. Wang, J. Mater. Sci. Mater. Electron. 25, 3664 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Fengjun Zhang at Key Lab of Groundwater Resources and Environment Ministry of Education Jilin University for the experimental support. This work was supported by National Natural Science Foundation of China (NSFC, Grant No. 51202115), Zhejiang Provincial Science foundation (Grant No. Y14F040005), and the support of K.C. Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guodong Wei or Wei Han.

Additional information

Liang Zhou and Mingze Xu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Xu, M., Wei, G. et al. Fe3O4@titanate nanocomposites: novel reclaimable adsorbents for removing radioactive ions from wastewater. J Mater Sci: Mater Electron 26, 2742–2747 (2015). https://doi.org/10.1007/s10854-015-2753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2753-5

Keywords

Navigation