Skip to main content

Sequestration of Heavy Metal Pollutants by Fe3O4-based Composites

  • Chapter
  • First Online:
Inorganic-Organic Composites for Water and Wastewater Treatment

Abstract

Heavy metal pollution poses a grave environmental threat. Some of the most toxic metals are highly mobile and, therefore, easily transported through ground water systems, thus, affecting large areas. Over the last decade, adsorption has been greatly focused on as a strategy for contaminated water treatment. Its versatility and relative ease of application have been a major determinant of its preference. Nanosized adsorbents have high surface areas and are size tunable and, hence, have been favored in adsorption applications. The magnetic properties of nanosized magnetite (Fe3O4) have made them particularly favorable. Magnetite composites with various materials have widely been applied in the adsorptive treatment of real and synthetic water containing heavy metal pollutants. This review outlines the application of Fe3O4 nanoparticles and Fe3O4 organic composites in the adsorption of heavy metal ions in aqueous solution. The reviewed articles indicate that the formation of Fe3O4 inorganic–organic composites improves the adsorption efficiencies of the composites and improves their applicability by providing magnetic separability. The presence of Fe3O4 nanoparticles in the composite materials also provides for improved reusability of the adsorbent. Generally, the formation of these composites tends to make adsorption a more viable alternative to conventional water treatment options for heavy metal pollutants in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alqadami AA, Naushad M, Abdalla MA, Ahamad T, Abdullah Alothman Z, Alshehri SM (2016) Synthesis and characterization of Fe3O4 @TSC nanocomposite: highly efficient removal of toxic metal ions from aqueous medium. RSC Adv 6:22679–22689. https://doi.org/10.1039/C5RA27525C

    Article  CAS  Google Scholar 

  2. Amara D, Margel S (2011) Solventless thermal decomposition of ferrocene as a new approach for the synthesis of porous superparamagnetic and ferromagnetic composite microspheres of narrow size distribution. J Mater Chem 21:15764–15772. https://doi.org/10.1039/c1jm11842k

    Article  CAS  Google Scholar 

  3. An B, Liang Q, Zhao D (2011) Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Res 45:1961–1972. https://doi.org/10.1016/j.watres.2011.01.004

    Article  CAS  Google Scholar 

  4. Attia TMS, Hu XL, Yin DQ (2014) Synthesised magnetic nanoparticles coated zeolite (MNCZ) for the removal of arsenic (As) from aqueous solution. J Exp Nanosci 9:551–560. https://doi.org/10.1080/17458080.2012.677549

    Article  CAS  Google Scholar 

  5. Badruddoza AZM, Shawon ZBZ, Tay WJD, Hidajat K, Uddin MS (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91:322–332. https://doi.org/10.1016/j.carbpol.2012.08.030

    Article  CAS  Google Scholar 

  6. Baig SA, Sheng T, Sun C, Xue X, Tan L, Xu X (2014) Arsenic removal from aqueous solutions using Fe3O4-HBC composite: effect of calcination on adsorbents performance. PLoS ONE 9:e100704. https://doi.org/10.1371/journal.pone.0100704

    Article  CAS  Google Scholar 

  7. Bhaumik M, Leswifi TY, Maity A, Srinivasu VV, Onyango MS (2011) Removal of fluoride from aqueous solution by polypyrrole/F3O4 magnetic nanocomposite. J Hazard Mater 186:150–159. https://doi.org/10.1016/j.jhazmat.2010.10.098

    Article  CAS  Google Scholar 

  8. Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2011) Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater 190:381–390. https://doi.org/10.1016/j.jhazmat.2011.03.062

    Article  CAS  Google Scholar 

  9. Bhowmick S, Chakraborty S, Mondal P, Van Renterghem W, Van den Berghe S, Roman-Ross G, Chatterjee D, Iglesias M (2014) Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism. Chem Eng J. https://doi.org/10.1016/j.cej.2013.12.049

    Article  Google Scholar 

  10. Burks T, Avila M, Akhtar F, Göthelid M, Lansåker PCC, Toprak MSS, Muhammed M, Uheida A (2014) Studies on the adsorption of chromium(VI) onto 3-mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 425:36–43. https://doi.org/10.1016/j.jcis.2014.03.025

    Article  CAS  Google Scholar 

  11. Darezereshki E, Darban A, Abdollahy M, Jamshidi-Zanjani A (2018) Influence of heavy metals on the adsorption of arsenate by magnetite nanoparticles: Kinetics and thermodynamic. Environ Nanotechnol Monit Manag 10:51–62. https://doi.org/10.1016/j.enmm.2018.04.002

  12. Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol

    Google Scholar 

  13. Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229. https://doi.org/10.1016/j.jhazmat.2008.01.024

    Article  CAS  Google Scholar 

  14. Fan R, Min H, Hong X, Yi Q, Liu W, Zhang Q, Luo Z (2019) Plant tannin immobilized Fe3O4@SiO2 microspheres: a novel and green magnetic bio-sorbent with superior adsorption capacities for gold and palladium. J Hazard Mater 364:780–790. https://doi.org/10.1016/j.jhazmat.2018.05.061

    Article  CAS  Google Scholar 

  15. Gonzalez-Moragas L, Yu SM, Murillo-Cremaes N, Laromaine A, Roig A (2015) Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition. Chem Eng J 281:87–95. https://doi.org/10.1016/j.cej.2015.06.066

    Article  CAS  Google Scholar 

  16. Guan X, Chang J, Chen Y, Fan H (2015) A magnetically-separable Fe3O4 nanoparticle surface grafted with polyacrylic acid for chromium(iii) removal from tannery effluents. RSC Adv 5:50126–50136. https://doi.org/10.1039/C5RA06659J

    Article  CAS  Google Scholar 

  17. Gupta VK, Agarwal S, Saleh TA (2011) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45:2207–2212. https://doi.org/10.1016/j.watres.2011.01.012

    Article  CAS  Google Scholar 

  18. Haldorai Y, Rengaraj A, Ryu T, Shin J, Huh YS, Han Y-K (2015) Response surface methodology for the optimization of lanthanum removal from an aqueous solution using a Fe3O4/chitosan nanocomposite. Mater Sci Eng B 195:20–29. https://doi.org/10.1016/j.mseb.2015.01.006

    Article  CAS  Google Scholar 

  19. Horst MF, Lassalle V, Ferreira ML (2015) Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and antraquinonic dyes. Front Environ Sci Eng 9:746–769. https://doi.org/10.1007/s11783-015-0814-x

    Article  CAS  Google Scholar 

  20. Iconaru SL, Guégan R, Popa CL, Motelica-Heino M, Ciobanu CS, Predoi D (2016) Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Appl Clay Sci 134:128–135. https://doi.org/10.1016/j.clay.2016.08.019

    Article  CAS  Google Scholar 

  21. Ihsanullah AA, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, Atieh MA (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161. https://doi.org/10.1016/j.seppur.2015.11.039

    Article  CAS  Google Scholar 

  22. Inoue K (2011) Heavy metal toxicity. J Clin Toxicol s3:1–2. https://doi.org/10.4172/2161-0495.S3-007

  23. Itoh H, Sugimoto T (2003) Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interface Sci 265:283–295. https://doi.org/10.1016/S0021-9797(03)00511-3

    Article  CAS  Google Scholar 

  24. Jais FM, Ibrahim S, Yoon Y, Jang M (2016) Enhanced arsenate removal by lanthanum and nano-magnetite composite incorporated palm shell waste-based activated carbon. Sep Purif Technol 169:93–102. https://doi.org/10.1016/j.seppur.2016.05.034

    Article  CAS  Google Scholar 

  25. Khalighyaan N, Hooshmand N, Razzaghi-Asl N, Zare K, Miri R (2014) Response surface strategy in the synthesis of Fe3O4 nanoparticles. Int J Nano Dimens 5:351–363

    Google Scholar 

  26. Khatoon N, Khan AH, Pathak V, Agnihotri N, Rehman M (2013) Removal of hexavalent chromium from synthetic waste water using synthetic Nano Zero Valent Iron (NZVI) as adsorbent. Int J Innov Res Sci Eng Technol 2:6140–6149

    Google Scholar 

  27. Kim HJ, Choi H, Sharma AK, Hong WG, Shin K, Song H, Kim HY, Hong YJ (2021) Recyclable aqueous metal adsorbent: synthesis and Cu(II) sorption characteristics of ternary nanocomposites of Fe3O4 nanoparticles@graphene–poly-N-phenylglycine nanofibers. J Hazard Mater 401:123283. https://doi.org/10.1016/j.jhazmat.2020.123283

    Article  CAS  Google Scholar 

  28. Kolen’Ko YV, Bañobre-López M, Rodríguez-Abreu C, Carbó-Argibay E, Sailsman A, Piñeiro-Redondo Y, Cerqueira MF, Petrovykh DY, Kovnir K, Lebedev OI, Rivas J (2014) Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J Phys Chem C 118:8691–8701. https://doi.org/10.1021/jp500816u

  29. Kumari M, Pittman CU, Mohan D (2015) Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. J Colloid Interface Sci 442:120–132. https://doi.org/10.1016/j.jcis.2014.09.012

    Article  CAS  Google Scholar 

  30. Kwon JH, Wilson LD, Sammynaiken R (2014) Synthesis and characterization of magnetite and activated carbon binary composites. Synth Met 197:8–17. https://doi.org/10.1016/j.synthmet.2014.08.010

    Article  CAS  Google Scholar 

  31. Lasheen MR, El-Sherif IY, Sabry DY, El-Wakeel ST, El-Shahat MF (2016) Adsorption of heavy metals from aqueous solution by magnetite nanoparticles and magnetite-kaolinite nanocomposite: equilibrium, isotherm and kinetic study. Desalin Water Treat 57:17421–17429. https://doi.org/10.1080/19443994.2015.1085446

    Article  CAS  Google Scholar 

  32. Latif A, Sheng D, Sun K, Si Y, Azeem M, Abbas A, Bilal M (2020) Remediation of heavy metals polluted environment using Fe-based nanoparticles: mechanisms, influencing factors, and environmental implications. Environ Pollut 264:114728. https://doi.org/10.1016/j.envpol.2020.114728

    Article  CAS  Google Scholar 

  33. Liu S, Huang B, Chai L, Liu Y, Zeng G, Wang X, Zeng W, Shang M, Deng J, Zhou Z (2017) Enhancement of As(V) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Adv 7:10891–10900. https://doi.org/10.1039/C6RA27341F

    Article  CAS  Google Scholar 

  34. Luther S, Borgfeld N, Kim J, Parsons JG (2012) Removal of arsenic from aqueous solution: a study of the effects of pH and interfering ions using iron oxide nanomaterials. Microchem J 101:30–36. https://doi.org/10.1016/j.microc.2011.10.001

    Article  CAS  Google Scholar 

  35. Mahdavian AR, Mirrahimi MA-S (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159:264–271. https://doi.org/10.1016/j.cej.2010.02.041

    Article  CAS  Google Scholar 

  36. Mayo JTT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VLL, Shiple H, Yu W, Falkner J, Kan A, Tomson M, Colvin VLL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71–75. https://doi.org/10.1016/j.stam.2006.10.005

    Article  CAS  Google Scholar 

  37. Minitha CR, Suresh R, Maity UK, Haldorai Y, Subramaniam V, Manoravi P, Joseph M, Rajendra Kumar RT (2018) Magnetite nanoparticle decorated reduced graphene oxide composite as an efficient and recoverable adsorbent for the removal of Cesium and strontium ions. Ind Eng Chem Res 57:1225–1232. https://doi.org/10.1021/acs.iecr.7b05340

    Article  CAS  Google Scholar 

  38. Monárrez-Cordero B, Amézaga-Madrid P, Antúnez-Flores W, Leyva-Porras C, Pizá-Ruiz P, Miki-Yoshida M (2014) Highly efficient removal of arsenic metal ions with high superficial area hollow magnetite nanoparticles synthetized by AACVD method. J Alloys Compd 586:S520–S525. https://doi.org/10.1016/j.jallcom.2012.12.073

    Article  CAS  Google Scholar 

  39. Ofomaja AE, Naidoo EB, Modise SJ (2009) Removal of copper(II) from aqueous solution by pine and base modified pine cone powder as biosorbent. J Hazard Mater 168:909–917. https://doi.org/10.1016/j.jhazmat.2009.02.106

    Article  CAS  Google Scholar 

  40. Okoli CP, Ofomaja AE (2019) Development of sustainable magnetic polyurethane polymer nanocomposite for abatement of tetracycline antibiotics aqueous pollution: response surface methodology and adsorption dynamics. J Clean Prod. https://doi.org/10.1016/J.JCLEPRO.2019.01.157

    Article  Google Scholar 

  41. Ouma ILA, Mushonga P, Madiehe AM, Meyer M, Dejene FB, Onani MO (2014) Synthesis, optical and morphological characterization of MPA-capped PbSe nanocrystals. Phys B Condens Matter 439:130–132. https://doi.org/10.1016/j.physb.2013.10.057

    Article  CAS  Google Scholar 

  42. Ouma ILA, Naidoo EB, Ofomaja AE (2017) Iron oxide nanoparticles stabilized by lignocellulosic waste as green adsorbent for Cr(VI) removal from wastewater. Eur Phys J Appl Phys 79:30401. https://doi.org/10.1051/epjap/2017160406

    Article  CAS  Google Scholar 

  43. Ouma ILA, Naidoo EB, Ofomaja AE (2018) Thermodynamic, kinetic and spectroscopic investigation of arsenite adsorption mechanism on pine cone-magnetite composite. J Environ Chem Eng 6:5409–5419. https://doi.org/10.1016/j.jece.2018.08.035

    Article  CAS  Google Scholar 

  44. Ouma ILA, Naidoo EB, Ofomaja AE (2019) An insight into the adsorption mechanism of hexavalent chromium onto magnetic pine cone powder. Chemistry for a clean and healthy planet. Springer International Publishing, Cham, pp 185–195

    Chapter  Google Scholar 

  45. Ouma L, Ofomaja A (2020) Probing the interaction effects of metal ions in Mnx Fe(3–x)O4 on arsenite oxidation and adsorption. RSC Adv 10:2812–2822. https://doi.org/10.1039/C9RA09543H

    Article  CAS  Google Scholar 

  46. Peng X, Xu F, Zhang W, Wang J, Zeng C, Niu M, Chmielewská E (2014) Magnetic Fe3O4 @ silica–xanthan gum composites for aqueous removal and recovery of Pb2+. Colloids Surfaces A Physicochem Eng Asp 443:27–36. https://doi.org/10.1016/j.colsurfa.2013.10.062

    Article  CAS  Google Scholar 

  47. Pholosi A, Ofomaja AE, Naidoo EB (2013) Effect of chemical extractants on the biosorptive properties of pine cone powder: influence on lead(II) removal mechanism. J Saudi Chem Soc 17:77–86. https://doi.org/10.1016/j.jscs.2011.10.017

    Article  CAS  Google Scholar 

  48. Ray PZ, Shipley HJ (2015) Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Adv 5:29885–29907. https://doi.org/10.1039/C5RA02714D

    Article  CAS  Google Scholar 

  49. Salam MA, El-Shishtawy RM, Obaid AY (2014) Synthesis of magnetic multi-walled carbon nanotubes/magnetite/chitin magnetic nanocomposite for the removal of Rose Bengal from real and model solution. J Ind Eng Chem 20:3559–3567. https://doi.org/10.1016/j.jiec.2013.12.049

    Article  CAS  Google Scholar 

  50. Shafique U, Ijaz A, Salman M, Zaman WU, Jamil N, Rehman R, Javaid A (2012) Removal of arsenic from water using pine leaves. J Taiwan Inst Chem Eng 43:256–263. https://doi.org/10.1016/j.jtice.2011.10.006

  51. Shaker S, Zafarian S, Chakra S, Rao VK (2013) Preparation and characterization of magnetite nanoparticles. Int J Innov Res Sci Eng Technol 2:2969–2973

    Google Scholar 

  52. Sharma G, Jeevanandam P (2013) Synthesis of self-assembled prismatic iron oxide nanoparticles by a novel thermal decomposition route. RSC Adv 3:189–200. https://doi.org/10.1039/c2ra22004k

    Article  CAS  Google Scholar 

  53. Stoica-Guzun A, Stroescu M, Jinga SI, Mihalache N, Botez A, Matei C, Berger D, Damian CM, Ionita V (2016) Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites. Int J Biol Macromol 91:1062–1072. https://doi.org/10.1016/j.ijbiomac.2016.06.070

    Article  CAS  Google Scholar 

  54. Stötzel C, Kurland HD, Grabow J, Müller FA (2015) Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles—control of the intraparticle phase distribution. Nanoscale 7:7734–7744. https://doi.org/10.1039/c5nr00845j

    Article  CAS  Google Scholar 

  55. Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions: a review. Bioresour Technol 99:6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064

    Article  CAS  Google Scholar 

  56. Sun X, Yang L, Li Q, Zhao J, Li X, Wang X, Liu H (2014) Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): synthesis and adsorption studies. Chem Eng J 241:175–183. https://doi.org/10.1016/j.cej.2013.12.051

    Article  CAS  Google Scholar 

  57. Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003

    Article  CAS  Google Scholar 

  58. Tian Y, Wu M, Lin X, Huang P, Huang Y (2011) Synthesis of magnetic wheat straw for arsenic adsorption. J Hazard Mater 193:10–16. https://doi.org/10.1016/j.jhazmat.2011.04.093

    Article  CAS  Google Scholar 

  59. US EPA (2009) National primary drinking water regulations

    Google Scholar 

  60. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  Google Scholar 

  61. Warner CL, Addleman RS, Cinson AD, Droubay TC, Engelhard MH, Nash MA, Yantasee W, Warner MG (2010) High-performance, superparamagnetic, nanoparticle-based heavy metal sorbents for removal of contaminants from natural waters. Chemsuschem 3:749–757. https://doi.org/10.1002/cssc.201000027

    Article  CAS  Google Scholar 

  62. Warner CL, Chouyyok W, Mackie KE, Neiner D, Saraf LV, Droubay TC, Warner MG, Addleman RS (2012) Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir 28:3931–3937. https://doi.org/10.1021/la2042235

    Article  CAS  Google Scholar 

  63. Wu L-K, Wu H, Zhang H, Cao H, Hou G, Tang Y, Zheng G-Q (2018) Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water. Chem Eng J 334:1808–1819. https://doi.org/10.1016/j.cej.2017.11.096

    Article  CAS  Google Scholar 

  64. Xiao C, Liu X, Mao S, Zhang L, Lu J (2017) Polystyrene/Fe3O4/chitosan magnetic composites for the efficient and recyclable adsorption of Cu(II) ions. Appl Surf Sci 394:378–385. https://doi.org/10.1016/j.apsusc.2016.10.116

    Article  CAS  Google Scholar 

  65. Yan W, Lien H-L, Koel BE, Zhang W (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Process Impacts 15:63. https://doi.org/10.1039/c2em30691c

    Article  CAS  Google Scholar 

  66. Yeo SY, Choi S, Dien V, Sow-Peh YK, Qi G, Hatton TA, Doyle PS, Thio BJR (2013) Using magnetically responsive tea waste to remove lead in waters under environmentally relevant conditions. PLoS ONE 8:e66648. https://doi.org/10.1371/journal.pone.0066648

    Article  CAS  Google Scholar 

  67. Zabochnicka-Światek M, Krzywonos M (2014) Potentials of biosorption and bioaccumulation processes for heavy metal removal. Polish J Environ Stud 23:551–561

    Google Scholar 

  68. Zarnegar Z, Safari J (2017) Modified chemical coprecipitation of magnetic magnetite nanoparticles using linear-dendritic copolymers. Green Chem Lett Rev 10:235–240. https://doi.org/10.1080/17518253.2017.1358769

    Article  CAS  Google Scholar 

  69. Zhang J, Liu W, Zhang M, Zhang X, Niu W, Gao M, Wang X, Du J, Zhang R, Xu Y (2017) Oxygen pressure-tuned epitaxy and magnetic properties of magnetite thin films. J Magn Magn Mater 432:472–476. https://doi.org/10.1016/j.jmmm.2017.02.032

    Article  CAS  Google Scholar 

  70. Zhou Z, Liu Y, Liu S, Liu H, Zeng G, Tan X (2017) Sorption performance and mechanisms of arsenic (V) removal by magnetic gelatin-modified biochar. Chem Eng J 314:223–231. https://doi.org/10.1016/j.cej.2016.12.113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge South Africa National Research Foundation (NRF) and the University of the Western Cape for funding this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ouma, L., Onani, M. (2022). Sequestration of Heavy Metal Pollutants by Fe3O4-based Composites. In: Lichtfouse, E., Muthu, S.S., Khadir, A. (eds) Inorganic-Organic Composites for Water and Wastewater Treatment. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-16-5916-4_4

Download citation

Publish with us

Policies and ethics