Skip to main content
Log in

Preparation and characterization of Ba0.2Sr0.8La4Ti4+xO15 microwave dielectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microwave dielectric ceramics in the Ba0.2Sr0.8La4Ti4+xO15 composition series were prepared through a solid state mixed oxide route. The stoichiometric Ba0.2Sr0.8La4Ti4O15 ceramics can be well densified in the temperature of 1,450 °C with a high compact microstructure. The phase composition was found to be sensitive to nonstoichiometry of TiO2 in this system because the major crystal phase of excess TiO2 samples was transformed from SrLa4Ti4O15 to La2TiO5. As the amount of TiO2 increased, the εr value of the Ba0.2Sr0.8La4Ti4+xO15 ceramics increased sharply first, and then showed a slightly decline after reaching the maximum value at x = 0.10, the Q × f value decreased almost linearly from 62,800 to 36,100 GHz, while the τf value varied gradually toward positive direction from −20.0 to −2.6 ppm/°C. Optimum dielectric properties were achieved for stoichiometric Ba0.2Sr0.8La4Ti4O15 and nonstoichiometric Ba0.2Sr0.8La4Ti4.20O15 ceramics which exhibited an excellent Q × f value and a near zero τf value with other considerable microwave dielectric properties, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C.-H. Hsu, C.-J. Huang, J. Alloy. Compd. 587, 45–49 (2014)

    Article  Google Scholar 

  2. Y. Tohdo, K. Kakimoto, H. Ohsato et al., J. Eur. Ceram. Soc. 26, 2039–2043 (2006)

    Article  Google Scholar 

  3. X. Wang, Y. Li, J. Li et al., J. Mater. Sci.: Mater. Electron. 25, 4720–4724 (2014)

    Google Scholar 

  4. W. Chi, K.A. Zaki, IEEE Microw. Mag. 8, 115–127 (2007)

    Google Scholar 

  5. R.R. Mansour, IEEE Microw. Mag. 5, 68–74 (2004)

    Article  Google Scholar 

  6. H. Sreemoolanadhan, J. Isaac, S. Solomon et al., Physica Status Solidi (A) 143, K45–K48 (1994)

    Article  Google Scholar 

  7. R. Ratheesh, H. Sreemoolanadhan, M.T. Sebastian, J. Solid State Chem. 131, 2–8 (1997)

    Article  Google Scholar 

  8. B. Tang, S. Yu, H. Chen et al., J. Mater. Sci.: Mater. Electron. 24, 1475–1479 (2013)

    Google Scholar 

  9. S.Q. Yu, B. Tang, X. Zhang et al., J. Am. Ceram. Soc. 95, 1939–1943 (2012)

    Article  Google Scholar 

  10. Y. Iqbal, A. Manan, I.M. Reaney, Mater. Res. Bull. 46, 1092–1096 (2011)

    Article  Google Scholar 

  11. I.N. Jawahar, N.I. Santha, M.T. Sebastian et al., J. Mater. Res. 17, 3084–3089 (2002)

    Article  Google Scholar 

  12. O. Takashi, K. Katsumasa, O. Hiroki et al., Jpn. J. Appl. Phys. 40, 5779–5782 (2001)

    Article  Google Scholar 

  13. J. Pei, Z. Yue, F. Zhao et al., J. Alloy. Compd. 459, 390–394 (2008)

    Article  Google Scholar 

  14. L. Liu, Y.-W. Fang, X.-F. Deng et al., J. Inorg. Mater. 27, 281–284 (2012)

    Article  Google Scholar 

  15. B. Tang, H. Li, P. Fan et al., J. Mater. Sci: Mater. Electron. 25, 1–5 (2014)

  16. A. Templeton, X. Wang, S.J. Penn et al., J. Am. Ceram. Soc. 83, 95–100 (2000)

    Article  Google Scholar 

  17. Y.-C. Liou, Y.-T. Chen, W.-C. Tsai, J. Alloy. Compd. 477, 537–542 (2009)

    Article  Google Scholar 

  18. Y. Li, J. Li, B. Tang et al., J. Mater. Sci.: Mater. Electron. 25, 1–6 (2014)

  19. Z.G. Zang, Appl. Opt. 52, 5701–5706 (2013)

    Article  Google Scholar 

  20. Z.G. Zang, W.X. Yang, J. Appl. Phys. 109, 103–106 (2011)

  21. Z.G. Zang, Y.J. Zhang, J. Mod. Opt. 59, 161–165 (2012)

    Article  Google Scholar 

  22. R. Shannon, Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Article  Google Scholar 

  23. X. Diez-Betriu, J.E. Garcia, C. Ostos et al., Mater. Chem. Phys. 125, 493–499 (2011)

    Article  Google Scholar 

  24. Z. Yue, F. Zhao, Z. Gui et al., J. Alloy. Compd. 395, 126–131 (2005)

    Article  Google Scholar 

  25. M.A. Petrova, R.G. Grebenshchikov, Glass Phys. Chem. 34, 603–607 (2008)

    Article  Google Scholar 

  26. M. German, L.M. Kovba, Russ. J. Inorg. Chem. 28, 2377–2379 (1983)

    Google Scholar 

  27. S.D. Skapin, D. Kolar, D. Suvorov, J. Eur. Ceram. Soc. 20, 1179–1185 (2000)

    Article  Google Scholar 

  28. T. Junichi, K. Keisuke, K. Kouhei, Jpn. J. Appl. Phys. 32, 4327–4331 (1993)

    Article  Google Scholar 

  29. J.B. MacChesney, H.A. Sauer, J. Am. Ceram. Soc. 45, 416–422 (1962)

    Article  Google Scholar 

  30. Z. Li, W. Wu, F. Liu et al., Mater. Lett. 118, 24–26 (2014)

    Article  Google Scholar 

  31. T.A. Vanderah, V.L. Miller, I. Levin et al., J. Solid State Chem. 177, 2023–2038 (2004)

    Article  Google Scholar 

  32. H. Li, Y. Li, B. Tang et al., J. Mater. Sci.: Mater. Electron. 25, 717–722 (2014)

    Google Scholar 

  33. M.P. Seabra, A.N. Salak, M. Avdeev et al., J. Phys. Condens. Matter. 15, 8 (2003)

    Google Scholar 

  34. N. Teneze, D. Mercurio, G. Trolliard et al., Mater. Res. Bull. 35, 1603–1614 (2000)

    Article  Google Scholar 

  35. H.X. Lin, Y. Zhang, X.Y. Zhao et al., Jpn. J. Appl. Phys. 47, 7243–7245 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Funds of China (Grant No. 51402039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Si, F., Li, Yx. et al. Preparation and characterization of Ba0.2Sr0.8La4Ti4+xO15 microwave dielectric ceramics. J Mater Sci: Mater Electron 26, 2719–2725 (2015). https://doi.org/10.1007/s10854-015-2748-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2748-2

Keywords

Navigation