Skip to main content
Log in

Failure study of solder joints subjected to random vibration loading at different temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the combined test of temperature and vibration is conducted to statistically analyze the influence of temperature (25, 65, 105 °C) on lifetime and failure mode of SAC305 solder joint subjected to random vibration loading. Results indicate that vibration resistance of solder joint is greatly improved with temperature increase. Mean lifetime of solder joint at 65 and 105 °C is increased by 70 and 174 % respectively compared to that of solder joint at 25 °C. Failure modes are analyzed using scanning electron microscope. Different crack paths are observed at elevated test temperature. Results show that crack propagation path gradually changes from the interface of intermetallic compound (IMC)/Cu pad to bulk solder with temperature rise. Failure mechanism is remarkably transformed from brittle fracture to ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Zhang, J. Han, C. He, Y. Guo, J. Mater. Sci. Mater. Electron. 24(1), 172 (2013)

    Article  Google Scholar 

  2. J. Hokka, T. Mattila, H. Xu, M. Paulasto-Kröckel, J. Electron. Mater. 42(6), 963 (2013)

    Article  Google Scholar 

  3. L. Zhang, L. Sun, Y. Guo, C.W. He, J. Mater. Sci. Mater. Electron. 25(3), 1209 (2014)

    Article  Google Scholar 

  4. T.T. Mattila, J.K. Kivilahti, IEEE Trans. Compon. Packag. Technol. 33(3), 629 (2010)

    Article  Google Scholar 

  5. S.F. Wong, P. Malatkar, C. Rick, V. Kulkarni, I. Chin, 57th Electronic Components and Technology Conference (IEEE, Reno, 2007). 373

    Google Scholar 

  6. R.A. Amy, G.S. Aglietti, G. Richardson, Shock Vib. 16(1), 45 (2009)

    Article  Google Scholar 

  7. Y. Zhou, M. Al-Bassyiouni, A. Dasgupta, Harmonic and random vibration durability of SAC305 and Sn37Pb solder alloys. IEEE Trans. Compon. Packag. Technol. 33(2), 319 (2010)

    Article  Google Scholar 

  8. Y. Zhou, M. Al-Bassyiouni, A. Dasgupta, J. Electron. Packag. 131(1), 11016 (2009)

    Article  Google Scholar 

  9. J. Pang, F. Wong, K. Heng, Y. Chua, C. Long, 63rd Electronic Components and Technology Conference (Las Vegas, IEEE, 2013), p. 1300

    Google Scholar 

  10. T.T. Mattila, J. Li, J.K. Kivilahti, Microelectron. Reliab. 52(1), 165 (2012)

    Article  Google Scholar 

  11. J. Karppinen, J. Li, M. Paulasto-Krockel, IEEE Trans. Device Mater. Reliab. 13(1), 167 (2013)

    Article  Google Scholar 

  12. JESD22-B111, Board Level Drop Test Method of Components for Handheld Electronic Products (JEDEC Solid State Technology Association, Arlington, 2003)

    Google Scholar 

  13. C. Choi, A. Dasgupta, 13th Thermal and Thermomechanical Phenomena in Electronic Systems (IEEE Inc., San Diego, 2012), p. 745

    Book  Google Scholar 

  14. Y. Liu, F. Kessels, W.D. van Driel, J. Van Driel, F. Sun, G. Zhang, Comparing drop impact test method using strain gauge measurements. Microelectron. Reliab. 49(9–11), 1299 (2009)

    Article  Google Scholar 

  15. R. Darveaux, C. Reichman, 57th Electronic Components and Technology Conference (IEEE Inc., Reno, 2007), p. 695

    Google Scholar 

  16. Y. Zhu, X. Li, C. Wang, R. Gao, J. Mater. Sci. Mater. Electron. 25(3), 1429 (2014)

    Article  Google Scholar 

  17. T.T. Mattila, M. Paulasto-Kröckel, Microelectron. Reliab. 51(6), 1077 (2011)

    Article  Google Scholar 

  18. X.Y. Niu, W. Li, G.X. Wang, X.F. Shu, J. Mater. Sci. Mater. Electron. 1(2014)

  19. T.T. Mattila, R. James, L. Nguyen, J. Kivilahti, 57th Electronic Components and Technology Conference (IEEE Inc., Reno, 2007), p. 940

    Google Scholar 

  20. M. Sona, K. Prabhu, J. Mater. Sci. Mater. Electron. 24(9), 3149 (2013)

    Article  Google Scholar 

  21. C. Liu, C. Lai, M. Wang, M. Hon, J. Cryst. Growth 290(1), 103 (2006)

    Article  Google Scholar 

  22. K.S. Kim, S.H. Huh, K. Suganuma, J. Alloys Compd. 352(1–2), 226 (2003)

    Article  Google Scholar 

  23. T. Mattila, J. Kivilahti, J. Electron. Mater. 34(7), 969 (2005)

    Article  Google Scholar 

  24. D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad, B.W. Grimsley, H.B. Tejada, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process 595, 460–461 (2007)

    Google Scholar 

  25. T. Mattila, J. Kivilahti, J. Electron. Mater. 35(2), 250 (2006)

    Article  Google Scholar 

  26. N. Zhang, Y. Shi, F. Guo, Y. Lei, Z. Xia, Z. Chen, L. Tian, J. Mater. Sci. Mater. Electron. 22(3), 292 (2011)

    Article  Google Scholar 

  27. N. Zhang, Y. Shi, F. Guo, Y. Lei, Z. Xia, L. Tian, J. Mater. Sci. Mater. Electron. 21(10), 1076 (2010)

    Article  Google Scholar 

  28. D.A.-A. Shnawah, M.F.M. Sabri, I.A. Badruddin, S.B.M. Said, F.X. Che, J. Mater. Sci. Mater. Electron. 23(11), 1988 (2012)

    Article  Google Scholar 

  29. J.-W. Kim, Y.-C. Lee, S.-S. Ha, S.-B. Jung, J. Mater. Sci. Mater. Electron. 20(1), 17 (2009)

    Article  Google Scholar 

  30. Y. Zhu, X. Li, R. Gao, C. Wang, J. Mater. Sci. Mater. Electron. 25(9), 3863 (2014)

    Article  Google Scholar 

  31. T. Laurila, J. Karppinen, J. Li, V. Vuorinen, M. Paulasto-Kröckel, J. Mater. Sci. Mater. Electron. 24(2), 644 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (51174069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglian Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, Y., Wang, J. et al. Failure study of solder joints subjected to random vibration loading at different temperatures. J Mater Sci: Mater Electron 26, 2374–2379 (2015). https://doi.org/10.1007/s10854-015-2693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2693-0

Keywords

Navigation