Skip to main content
Log in

Electrochemical construction of different titania–tungsten trioxide nanotubular composite and their photocatalytic activity for pollutant degradation: a recyclable photocatalysts

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Different TiO2–WO3 nanotubular (TWNs) electrodes were fabricated by in situ anodization of titanium in a single-step process using sodium tungstate as the tungsten source. The morphology and structure were characterized by field-emission scanning electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy. Optical properties were investigated by ultra UV–Vis diffuse reflectance spectra. The resulting TWNs showed a tube diameter of 80–110 nm, wall thickness of 20–40 nm and tube lengths in the range of 7–8 μm. The visible light photocatalytic activity of the TWNs electrodes was evaluated by measuring the degradation of methylene blue dye under simulated sunlight conditions and compared with photo-catalytic activity of pure TiO2 nanotubes (TNs). The results showed that TWNs electrodes have excellent photo-catalytic performance. The sample C, that formed by anodic oxidation in a DMSO electrolyte containing 4 g/l sodium tungstate, exhibited better photo-catalytic activity than the TNs and TWNs fabricated using other W concentrations under Xe illumination. The anodization process developed in this study is facile, reproducible, and inexpensive, and can be easily scaled up, thereby pioneering the fabrication of high performance photo-catalysts with promising environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.D. Ye, K.X. Xin, C.J. Lin, Z.Q. Lin, Nano Lett. 11, 3214 (2011)

    Article  Google Scholar 

  2. J. Wang, Z. Lin, Chem. Mater. 22, 579 (2010)

    Article  Google Scholar 

  3. H.F. Zhuang, C.J. Lin, Y.K. Lai, L. Sun, J. Li, Environ. Sci. Technol. 41, 4735 (2007)

    Article  Google Scholar 

  4. J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 3, 300 (2007)

    Article  Google Scholar 

  5. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006)

    Article  Google Scholar 

  6. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Curr. Opin. Solid State Mater. Sci. 11, 3 (2007)

    Article  Google Scholar 

  7. J. Wang, L. Zhao, V.S.Y. Lin, Z.Q. Lin, J. Mater. Chem. 19, 3682 (2009)

    Article  Google Scholar 

  8. J. Wang, Z.Q. Lin, J. Phys. Chem. C 113, 4026 (2009)

    Article  Google Scholar 

  9. K. Xie, Q. Wu, Y. Wang, W. Guo, M. Wang, L. Sun, C. Lin, Electrochem. Commun. 13, 1469 (2011)

    Article  Google Scholar 

  10. I. Paramasivam, J.M. Macak, P. Schmuki, Electrochem. Commun. 10, 71 (2008)

    Article  Google Scholar 

  11. K.P. Xie, L. Sun, C.L. Wang, Y.K. Lai, M.Y. Wang, H.B. Chen, C.J. Lin, Electrochim. Acta 55, 7211 (2010)

    Article  Google Scholar 

  12. X.L. He, Y.Y. Cai, H.M. Zhang, C.H. Liang, J. Mater. Chem. 21, 475 (2011)

    Article  Google Scholar 

  13. G.K. Mor, O.K. Varghese, R.H.T. Wilke, S. Sharma, K. Shankar, T.J. Latempa, K.S. Choi, C.A. Grimes, Nano Lett. 8, 1906 (2008)

    Article  Google Scholar 

  14. G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shanker, C.A. Grimes, Nano Lett. 7, 2356 (2007)

    Article  Google Scholar 

  15. Z. Jiang, F. Yang, N.J. Luo, B.T.T. Chu, D. Sun, H.H. Shi, T.C. Xiao, P. Edwards, Chem. Commun. 47, 6372 (2008)

    Article  Google Scholar 

  16. S.Y. Kuang, L.X. Yang, S.L. Luo, Q.Y. Cai, Appl. Surf. Sci. 255, 7385 (2009)

    Article  Google Scholar 

  17. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008)

    Article  Google Scholar 

  18. Y. Bessekhouad, D. Robert, J.V. Weber, Catal. Today 101, 315 (2005)

    Article  Google Scholar 

  19. W.B. Su, J.F. Wang, H.C. Chen, W.X. Wang, G.Z. Zang, Mater. Sci. Eng. B 99, 461 (2003)

    Article  Google Scholar 

  20. M. Kobayashi, K. Katsunori, Appl. Catal. B 72, 253 (2007)

    Article  Google Scholar 

  21. V. Keller, P. Bernhardt, F. Garin, J. Catal. 215, 129 (2003)

    Article  Google Scholar 

  22. K.K. Akurati, A. Vital, J.P. Dellmann, K. Michalow, T. Graule, D. Ferri, A. Baiker, Appl. Catal. B 79, 53 (2008)

    Article  Google Scholar 

  23. H. Shinguu, M.M.H. Bhuiyan, T. Ikegami, K. Ebihara, Thin Solid Films 506–507, 111 (2006)

    Article  Google Scholar 

  24. J. Georieva, S. Armyanov, E. Valova, I. Poulios, S. Sotiropoulos, Electrochem. Commun. 9, 365 (2007)

    Article  Google Scholar 

  25. C.S. Hsu, C.K. Lin, C.C. Chan, C.C. Chang, C.Y. Tsay, Thin Solid Films 494, 228 (2006)

    Article  Google Scholar 

  26. L. Yang, Y. Xiao, S. Liu, Y. Li, Q. Cai, S. Luo, G. Zeng, Appl. Catal. B 94, 142 (2010)

    Article  Google Scholar 

  27. Zh Shan, W. Wang, X. Lin, H. Ding, F. Huang, J. Solid State Chem. 181, 1361 (2008)

    Article  Google Scholar 

  28. S. Bauer, A. Pittrof, H. Tsuchiya, P. Schmuki, Electrochem. Commun. 13, 538 (2011)

    Article  Google Scholar 

  29. M.X. Sun, X.L. Cui, Electrochem. Commun. 20, 133 (2012)

    Article  Google Scholar 

  30. J. Gong, W. Pu, C. Yang, J. Zhang, Catal. Commun. 36, 89 (2013)

    Article  Google Scholar 

  31. A. Elshabini-Raid, F. Barlow, Thin Film Technology Handbook (McGraw-Hill, New York, 1998)

    Google Scholar 

  32. M. Asilturk, F. Sayılkan, E. Arpac, J. Photochem. Photobiol. A 203, 64 (2009)

    Article  Google Scholar 

  33. V. Iliev, D. Tomova, S. Rakovsky, A. Eliyas, G.L. Puma, J. Mol. Catal. A Chem. 327, 51 (2010)

    Article  Google Scholar 

  34. K. Lv, J. Li, X. Qing, W. Li, Q. Chen, J. Hazard. Mater. 189, 329 (2011)

    Article  Google Scholar 

  35. A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, Appl. Catal. B 91, 397 (2009)

    Article  Google Scholar 

  36. A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, J. Hazard. Mater. 177, 781 (2010)

    Article  Google Scholar 

  37. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 42, 319 (2003)

    Article  Google Scholar 

  38. J.M. Herrmann, Top. Catal. 34, 49 (2005)

    Article  Google Scholar 

  39. N.A. Ramos-Delgado, M.A. Gracia-Pinilla, L. Maya-Trevino, L. Hinojosa-Reyes, J.L. Guzman-Mar, A. Hernandez-Ramirez, J. Hazard. Mater. 263P, 36 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Mohsen Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, M.M., Ghayeb, Y. & Davarzadeh, M. Electrochemical construction of different titania–tungsten trioxide nanotubular composite and their photocatalytic activity for pollutant degradation: a recyclable photocatalysts. J Mater Sci: Mater Electron 26, 1560–1567 (2015). https://doi.org/10.1007/s10854-014-2575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2575-x

Keywords

Navigation