Skip to main content
Log in

Investigation of conductivity and catalytic ability at an electrochemically reduced graphene oxide film modified electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we obtained electrochemically reduced graphene oxide (ERGO) film via giving an appropriate negative potential to graphene oxide film on a glassy carbon electrode. The irreversible electrochemical reduction process and the enhancement of conductivity were ascribed to the decrease of oxygen groups of graphene oxide. With reduction potential becoming negatively, the resistance of ERGO declined obviously and the electrocatalytic ability of ERGO film were substantially improved toward probe molecules such as ascorbic acid and K3[Fe(CN)6]. Acid solution contributed to the reduction of graphene oxide and hydrogen ions participated in the electrochemical process. In NaOH solution, two cathodic peaks appeared at −1.40 V and −1.76 V, respectively. It is applicable to obtain ERGO film based on the favorable factors and details. This method is green and fast, and will not result in contamination of the reduced material. In addition, this approach shows promising application in electrochemical sensor field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.K. Geim, Science 324, 1530–1534 (2009)

    Article  Google Scholar 

  2. N.N. Klimov, S.Y. Jung, S.Z. Zhu, T. Li, A. Wright, S.D. Solares, D.B. Newell, N.B. Zhitenev, J.A. Stroscio, Science 336, 1557–1561 (2012)

    Article  Google Scholar 

  3. Q.H. Wang, Z. Jin, K.K. Kim, A.J. Hilmer, G.L.C. Paulus, G.J. Shih, M.H. Ham, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, J. Kong, P. Jarillo-Herrero, M.S. Strano, Nat. Chem. 4, 724–732 (2012)

    Article  Google Scholar 

  4. L. Liu, J. Park, D.A. Siegel, K.F. McCarty, K.W. Clark, W. Deng, L. Basile, J.C. Idrobo, A.P. Li, G. Gu, Science 343, 163–167 (2014)

    Article  Google Scholar 

  5. R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Science 343, 752–754 (2014)

    Article  Google Scholar 

  6. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Article  Google Scholar 

  7. E. Bekyarova, M.E. Itkis, P. Ramesh, C. Berger, M. Sprinkle, W.A. Heer, R.C. Haddon, J. Am. Chem. Soc. 131, 1336–1337 (2009)

    Article  Google Scholar 

  8. Q.H. Wang, M.C. Hersam, Nano Lett. 11, 589–593 (2011)

    Article  Google Scholar 

  9. W. Chen, S. Chen, D.C. Qi, X.Y. Gao, A.T.S. Wee, J. Am. Chem. Soc. 129, 10418–10422 (2007)

    Article  Google Scholar 

  10. G.H. Lu, L.E. Ocola, J.H. Chen, Nanotechnology 20, 445502–445511 (2009)

    Article  Google Scholar 

  11. Y.G. Zhang, C.M. Liu, Y.L. Min, X.F. Qi, X.D. Ben, J. Mater. Sci. Mater. Electron 24, 3244–3248 (2013)

    Article  Google Scholar 

  12. M. Ahmed, N. Kishi, R. Sugita, A. Fukaya, I. Khatri, J.B. Liang, S.M. Mominuzzaman, T. Soga, T. Jimbo, J. Mater. Sci. Mater. Electron 24, 2151–2155 (2013)

    Article  Google Scholar 

  13. E. Casero, C. Alonso, L. Vazquez, M.D. Petit-Dominguez, A.M. Parra-Alfambra, M.D.L. Fuente, P. Merino, S. Alvarez-Garcia, A.D. Andrs, F. Pariente, E. Lorenzo, Electroanalysis 25, 154–165 (2013)

    Article  Google Scholar 

  14. S. Patchkovskii, J.S. Tse, S.N. Yurchenko, L. Zhechkov, T. Heine, G. Seifert, PNAS 102, 10439–10444 (2005)

    Article  Google Scholar 

  15. M. Keidar, A. Shashurin, O. Volotskova, Y. Raitses, I.I. Beilis, Phys. Plasmas 17, 057101–057109 (2010)

    Article  Google Scholar 

  16. D.M. Sun, W.N. Hu, W. Ma, J. Anal. Chem. 66, 310–316 (2011)

    Article  Google Scholar 

  17. C.S. Shan, H.F. Yang, D.X. Han, Q.X. Zhang, A. Ivaska, L. Niu, Biosens. Bioelectron. 25, 1504–1508 (2010)

    Article  Google Scholar 

  18. Y. Wang, Y.M. Li, L.H. Tang, J. Lu, J.H. L. Electrochem. Commun. 11, 889–892 (2009)

    Article  Google Scholar 

  19. Z.J. Wang, X.Z. Zhou, J. Zhang, F. Boey, H. Zhang, J. Phys. Chem. C 113, 14071–14075 (2009)

    Article  Google Scholar 

  20. A.B. Kharitonov, L. Alfonta, E. Katz, I. Willner, J. Electroanal. Chem. 487, 133–141 (2000)

    Article  Google Scholar 

  21. M. Zhou, Y.L. Wang, Y.M. Zhai, J.F. Zhai, W. Ren, F. Wang, S.J. Dong, Chem. Eur. J. 15, 6116–6120 (2009)

    Article  Google Scholar 

  22. M. Pumera, Chem. Rec. 9, 211–223 (2009)

    Article  Google Scholar 

  23. M. Pumera, R. Scipioni, H. Iwai, T. Ohno, Y. Miyahara, M. Boero, Chem. Eur. J. 15, 10851–10856 (2009)

    Article  Google Scholar 

  24. H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, X.H. Xia, ACS Nano 3, 2653–2659 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by Anhui Province Universities Provincial Natural Science Research Foundation for Key Project (No. KJ2011A255), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gen Liu or Dengming Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Wang, Y. & Sun, D. Investigation of conductivity and catalytic ability at an electrochemically reduced graphene oxide film modified electrode. J Mater Sci: Mater Electron 26, 943–949 (2015). https://doi.org/10.1007/s10854-014-2486-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2486-x

Keywords

Navigation