Skip to main content
Log in

Aluminum nitride filled flexible silicone rubber composites for microwave substrate applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mechanically flexible aluminum nitride–silicone rubber composites (SAN) were prepared by hot pressing technique for different filling fractions. The effects of filler content on the dielectric, thermal and mechanical properties as well as on moisture absorption were investigated. The relative permittivity and dielectric loss of the composite were found to vary linearly with filler content. The variation in relative permittivity of SAN composites with temperature was also investigated at a frequency of 1 MHz. Theoretical modelling of relative permittivity of the composites was performed and the results were correlated with the experimental data. Among the theoretical models effective medium theory is in good agreement with experimental values of relative permittivity. The coefficient of thermal expansion and specific heat capacity of the composite were found to decrease with filler content and thermal conductivity, thermal diffusivity and the moisture absorption increased with filler loading. The SAN composite is found to be a good candidate for a thermally conductive flexible microwave substrate application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Emerging Displays Report-Flexible Displays Technology 2012. http://www.isuppli.com/

  2. M.T. Sebastian, H. Jantunen, Int. J. Appl. Ceram. Technol. 7, 415 (2010)

    Google Scholar 

  3. G. Subodh, M.V. Manjusha, J. Philip, M.T. Sebastian, J. Appl. Polym. Sci. 108, 1716 (2008)

    Article  Google Scholar 

  4. W.Y. Zhou, S.H. Qi, H.Z. Zhao, N.L. Liu, Polym. Compos. 11, 23 (2007)

    Article  Google Scholar 

  5. L.K. Namitha, M.T. Sebastian, Mater. Res. Bull. 48, 4911 (2013)

    Article  Google Scholar 

  6. Y. Zhou, H. Wang, L. Wang, U. Key, Z. Lin, L. He, Y. Bhai, Mater. Sci. Eng. B. 177, 892 (2012)

    Article  Google Scholar 

  7. R.K. Goyal, P. Jadhav, A.N. Tiwari, J. Electron. Mater. 40, 1377 (2011)

    Article  Google Scholar 

  8. M. Choudhary, S. Mohanty, S.K. Nayak, R. Aphale, JMMCE 11, 744 (2012)

    Google Scholar 

  9. M. Choudhary, S. Mohanty, S.K. Nayak, Polym. Compos. 34, 1 (2013)

    Article  Google Scholar 

  10. L.C. Sim, S.L. Ramanan, H. Ismail, Thermochim. Acta 430, 155 (2005)

    Article  Google Scholar 

  11. H.T. Chiu, T. Sukachonmakul, M.T. Kuo, Y.H. Wang, K. Wattanakul, Appl. Surf. Sci. 292, 928 (2014)

    Article  Google Scholar 

  12. H.T. Chiu, T. Sukachonmakul, C.H. Wang, K. Wattanakul, M.T. Kuo, Y.H. Wang, Appl. Surf. Sci. 292, 319 (2014)

    Article  Google Scholar 

  13. S. Gunasekaran, R.K. Natarajan, A. Kala, R. Jagannathan, Indian J. Pure Appl. Phys. 46, 733 (2008)

    Google Scholar 

  14. L.K. Namitha, J. Chameswary, S. Ananthakumar, M.T. Sebastian, Ceram. Int. 39, 7077 (2013)

    Article  Google Scholar 

  15. C. Janardhanan, L.K. Namitha, M. Brahmakumar, M.T. Sebastian, Int. J. Appl. Ceram. Technol. 11, 919 (2014)

    Article  Google Scholar 

  16. F.N. Ahmad, M. Jaafar, S. Palaniandy, K.A.M. Azizli, Compos. Sci. Technol 68, 346 (2008)

    Article  Google Scholar 

  17. S. Salaeh, G. Boiteux, P. Cassagnau, C.J. Nakason, Int. J. Appl. Ceram. Technol. 7, 415 (2013)

    Google Scholar 

  18. W.Y. Zhou, S.H. Qi, C.C. Tu, J. Appl. Polym. Sci. 104, 2478 (2007)

    Article  Google Scholar 

  19. S. Rajesh, K.P. Murali, K.V. Rajani, R. Ratheesh, Compos. Part A 40, 1179 (2007)

    Google Scholar 

  20. T.S. Laverghetta, Microwave Materials and Fabrication Techniques (Artech House, USA, 1984), pp. 9–21

    Google Scholar 

  21. G. Subodh, M. Joseph, P. Mohanan, M.T. Sebastian, J. Am. Ceram. Soc. 90, 3507 (2007)

    Article  Google Scholar 

  22. S. Kemaloglu, G. Ozkoc, A. Aytac, Thermochim. Acta 499, 40 (2009)

    Article  Google Scholar 

  23. F. Xiang, H. Wang, X. Yao, J. Eur. Ceram. Soc. 499, 1999 (2006)

    Article  Google Scholar 

  24. P.S. Anjana, V. Deepu, S. Uma, P. Mohanan, J. Philip, M.T. Sebastian, J. Polym. Sci. Part B Polym. Phys. 48, 998 (2010)

    Article  Google Scholar 

  25. N. Jayasundere, B.V. Smith, J. Appl. Phys. 73, 2462 (1993)

    Article  Google Scholar 

  26. Y. Rao, J. Qu, T. Marinis, C.P. Wong, IEEE Trans. Compos. Packag. Technol. 23, 680 (2000)

    Article  Google Scholar 

  27. B.J.P. Adohi, C. Brosseau, J. Appl. Phys. 105, 054108-1 (2009)

    Article  Google Scholar 

  28. G.M. Tsangaris, G.C. Psarras, J. Mater. Sci. 34, 2151 (1999)

    Article  Google Scholar 

  29. M.A. Berger, M.A. McCullough, Compos. Sci. Technol. 22, 81 (1985)

    Article  Google Scholar 

Download references

Acknowledgments

Mrs. Namitha. L.K is grateful to Council of Scientific and Industrial Research (CSIR), New Delhi for the award of senior research fellowship. Dr. Prabhakar Rao for recording XRD pattern, Mr. Chandran for SEM, Miss. Gayathri for thermal expansion measurements and Mr. Brahmakumar for tensile measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Sebastian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namitha, L.K., Ananthakumar, S. & Sebastian, M.T. Aluminum nitride filled flexible silicone rubber composites for microwave substrate applications. J Mater Sci: Mater Electron 26, 891–897 (2015). https://doi.org/10.1007/s10854-014-2479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2479-9

Keywords

Navigation