Skip to main content
Log in

Thermally conductive silicone rubber used as insulation coating through incremental curing and the effects of thermal filler on its mechanical and thermal properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

With the rapid development of the electronics, communication, and energy industries, there is an increasing demand for flexible materials with high thermal conductivity and electrical insulation properties. Silicone rubber (SR) is widely used in various fields due to its excellent mechanical properties. However, its intrinsic low thermal conductivity requires the addition of thermally conductive fillers to enhance its thermal conductivity. Insulating thermally conductive composites are prepared by adding thermally conductive fillers such as boron nitride (BN) and graphite into a silicone rubber matrix. When BN is added as a single filler up to 20 wt%, the thermal conductivity of BN/SR reaches 0.526 W m−1 K−1, which is a 126% improvement compared to the SR matrix. When the total filler content is 20 wt%, and the ratio of BN to graphite is 1:1, the thermal conductivity of BN/graphite/SR composite is 0.685 W m−1 K−1. This represents a 194% and 30% increase in thermal conductivity compared to the SR matrix and BN/SR composite with the same filler content, respectively. On the cured silicone rubber substrate, the incremental cured BN/SR acts as an insulation coating. This allows for a significant reduction in the electrical conductivity of the composite without the use of adhesives, while preserving the thermal conductivity. Moreover, the interface formed through incremental curing retains high tensile and compressive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data and code availability statement

The date that supports the findings of this study are available on request from the corresponding author. The date is not publicly available due to privacy or ethical restrictions.

References

  1. Li Y, Liu W, Shen F, Zhang G, Gong L, Zhao L, Song P, Gao J, Tang L (2022) Processing, thermal conductivity and flame-retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: a comparative study. Compos Part B 238:109907. https://doi.org/10.1016/j.compositesb.2022.109907

    Article  CAS  Google Scholar 

  2. Hu X, Huang M, Kong N, Han F, Tan R, Huang Q (2021) Enhancing the electrical insulation of highly thermally conductive carbon fiber powders by SiC ceramic coating for efficient thermal interface materials. Compos Part B 227:109398. https://doi.org/10.1016/j.compositesb.2021.109398

    Article  CAS  Google Scholar 

  3. Wen Y, Xue Y, Li X, Pei H, Zhou X, Feng Y, Ye Y, Xie X, Mai Y (2020) In-situ shear exfoliation and thermal conductivity of SBS/Graphite nanoplatelet nanocomposites. Compos Part B 197:108172. https://doi.org/10.1016/j.compositesb.2020.108172

    Article  CAS  Google Scholar 

  4. Gu J, Yang X, Lv Z, Li N, Liang B, Zhang Q (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Transf 92:15–22. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.081

    Article  CAS  Google Scholar 

  5. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and Applications. Prog Polym Sci 59:41–85. https://doi.org/10.1016/j.progpolymsci.2016.03.001

    Article  CAS  Google Scholar 

  6. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28. https://doi.org/10.1016/j.progpolymsci.2016.05.001

    Article  CAS  Google Scholar 

  7. Ruan K, Shi X, Guo Y, Gu J (2020) Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos Commun 22:100518. https://doi.org/10.1016/j.coco.2020.100518

    Article  Google Scholar 

  8. Zhang F, Feng Y, Feng W (2020) Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater Sci Engineering: R: Rep 142:100580. https://doi.org/10.1016/j.mser.2020.100580

    Article  Google Scholar 

  9. Mu Q, Feng S, Diao G (2007) Thermal conductivity of Silicone Rubber filled with ZnO. Polym Compos 28:125–130. https://doi.org/10.1002/pc.20276

    Article  CAS  Google Scholar 

  10. Sheng M, Yang R, Gong H, Zhang Y, Lin X, Jing J (2022) Enhanced thermal conductivity and stability of boron nitride/phenyl silicone rubber composites via surface modification and grain alignment. J Mater Sci 57:5805–5824. https://doi.org/10.1007/s10853-021-06860-8

    Article  CAS  Google Scholar 

  11. Song J, Zhang Y (2020) Vertically aligned Silicon Carbide Nanowires/Reduced Graphene Oxide Networks for enhancing the Thermal Conductivity of Silicone Rubber composites. Compos Part A: Appl Sci Manufac 133:105873. https://doi.org/10.1016/j.compositesa.2020.105873

    Article  CAS  Google Scholar 

  12. Xue Y, Li X, Wang H, Zhao F, Zhang D, Chen Y (2019) Improvement in thermal conductivity of through-plane aligned boron nitride/silicone rubber composites. Mater Design 165:107580. https://doi.org/10.1016/j.matdes.2018.107580

    Article  CAS  Google Scholar 

  13. Deng B, Shi Y, Zhang X, Ma W, Liu H, Gong C (2022) Thermally conductive and electrically insulated Silicone Rubber composites Incorporated with Boron Nitride – Multilayer Graphene Hybrid Nanofiller. Nanomaterials 12:2335. https://doi.org/10.3390/nano12142335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ding D, Zhang S, Liang H, Wang X, Wu Y, Ye Y, Liu Z, Zhang Q, Qin G, Chen Y (2023) Enhancing thermal conductivity of silicone rubber composites by in-situ constructing SiC networks: a finite-element study based on first principles calculation. Nano Res 16:1430–1440. https://doi.org/10.1007/s12274-022-4639-1

    Article  CAS  Google Scholar 

  15. Guo Y, Qiu H, Ruan K, Wang S, Zhang Y, Gu J (2022) Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos Sci Technol 219:109253. https://doi.org/10.1016/j.compscitech.2021.109253

    Article  CAS  Google Scholar 

  16. Han R, Li Y, Zhu Q, Niu K (2022) Research on the preparation and thermal stability of silicone rubber composites: a review. Compos Part C: Open Access 8:100249. https://doi.org/10.1016/j.jcomc.2022.100249

    Article  CAS  Google Scholar 

  17. Yin Z, Guo J, Jiang X (2021) Significantly improved thermal conductivity of silicone rubber and aligned boron nitride composites by a novel roll-cutting processing method. Compos Sci Technol 209:108794. https://doi.org/10.1016/j.compscitech.2021.108794

    Article  CAS  Google Scholar 

  18. Xue Y, Wang H, Li X, Chen Y (2021) Exceptionally thermally conductive and electrical insulating multilaminar aligned silicone rubber flexible composites with highly oriented and dispersed filler network by mechanical shearing. Compos A 144:106336. https://doi.org/10.1016/j.compositesa.2021.106336

    Article  CAS  Google Scholar 

  19. Yan H, Dai X, Ruan K, Zhang S, Shi X, Guo Y, Cai H, Gu J (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater 4:36–50. https://doi.org/10.1007/s42114-021-00208-1

    Article  CAS  Google Scholar 

  20. Zhang Y, Lei C, Wu K, Fu Q (2021) Fully Organic Bulk Polymer with Metallic Thermal Conductivity and Tunable Thermal pathways. Adv Sci 2004821. https://doi.org/10.1002/advs.202004821

  21. Zhou W, Qi S, Zhao H, Liu N (2007) Thermally conductive silicone Rubber Reinforced with Boron Nitride particle. Polym Compos 28:23–28. https://doi.org/10.1002/pc.20296

    Article  CAS  Google Scholar 

  22. Zhong B, Zou J, An L, Ji C, Huang X, Liu W, Yu Y, Wang H, Wen G, Zhao K, Lin X (2019) The effects of the hexagonal boron nitride nanoflake properties on the thermal conductivity of hexagonal boron nitride nanoflake/silicone rubber composites. Compos Part A: Appl Sci Manufac 127:105629. https://doi.org/10.1016/j.compositesa.2019.105629

    Article  CAS  Google Scholar 

  23. Chen X, Song J, Lim K, Yan W, Guo F, Liang Y, Chen H, Alexis L, Xiao MH (2020) Salt Template assisted BN Scaffold fabrication towards highly thermal conductive epoxy composites. ACS Appl Mater Interfaces 12:16987–16996. https://doi.org/10.1021/acsami.0c04882

    Article  CAS  PubMed  Google Scholar 

  24. Yu H, Guo P, Qin M, Han G, Chen L, Feng Y, Feng W (2022) Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos Sci Technol 222:109406. https://doi.org/10.1016/j.compscitech.2022.109406

    Article  CAS  Google Scholar 

  25. Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C, Li Y, Xu BB, Murugadoss V, Naik N, El-Bahy SM, El-Bahy ZM, Huang M, Guo Z (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14:118. https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  Google Scholar 

  26. Xiao C, Guo Y, Tang Y, Ding J, Zhang X, Zheng K, Tian X (2020) Epoxy composite with significantly improved thermal conductivity by constructing a vertically aligned three-dimensional network of silicon carbide nanowires/ boron nitride nanosheets. Compos Part B: Eng 187:107855. https://doi.org/10.1016/j.compositesb.2020.107855

    Article  CAS  Google Scholar 

  27. Vu MC, Choi WK, Lee SG, Park P, Kim DH, Islam M, Kim SR (2020) High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds. ACS Appl Mater Interfaces 12(20):23388–23398. https://doi.org/10.1021/acsami.0c02421

    Article  CAS  PubMed  Google Scholar 

  28. Lule Z, Kim J (2019) Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride. Compos Part A: Appl Sci Manufac 124:105506. https://doi.org/10.1016/j.compositesa.2019.105506

    Article  CAS  Google Scholar 

  29. Jang S, Choi EJ, Cheon HJ, Choi WI, Shin WS, Lim JM (2021) Fabrication of Al2O3/ZnO and Al2O3/Cu Reinforced Silicone Rubber Composite pads for Thermal interface materials. Polymers 13:3259. https://doi.org/10.3390/polym13193259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kurian AS, Mohan VB, Souri HS, Leng JL, Bhattacharyya DB (2020) Multifunctional flexible and stretchable graphite-silicone rubber composites. J Mater Res Technol 9:15621–15630. https://doi.org/10.1016/j.jmrt.2020.11.021

    Article  CAS  Google Scholar 

  31. Liu D, Kong Q, Jia H, Xie L, Chen J, Tao Z, Wang Z, Jiang D, Chen C (2021) Dual-functional 3D multi-wall carbon nanotubes/graphene/silicone rubber elastomer: thermal management and electromagnetic interference shielding. Carbon 183:216–224. https://doi.org/10.1016/j.carbon.2021.07.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Zhang wish to acknowledge the financial support from the program of China Scholarship Council (202108050050).

Funding

China Scholarship Council,202108050050,Kang Zhang

Author information

Authors and Affiliations

Authors

Contributions

Kang Zhang: Methodology, Data acquisition, Formal analysis, Writing-original draft, Funding acquisition. Jianhui Qiu: Methodology, Supervision, Project administration, Data curation. Eiichi Sakai: Project administration, Resources, Supervision. Guohong Zhang: Project administration. Hong Wu: Project administration, Supervision. Shaoyun Guo: Project administration, Supervision. Liang Zhang: Data curation. Hiroyuki Yamaguchi: Resources. Yasunori Chonan: Resources.

Corresponding author

Correspondence to Jianhui Qiu.

Ethics declarations

Ethical approval statement

Not Applicable.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 724 KB)

Supplementary file2 (DOCX 8254 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Qiu, J., Sakai, E. et al. Thermally conductive silicone rubber used as insulation coating through incremental curing and the effects of thermal filler on its mechanical and thermal properties. J Polym Res 30, 458 (2023). https://doi.org/10.1007/s10965-023-03842-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03842-z

Keywords

Navigation