Skip to main content
Log in

Microstructure, ferro-piezoelectric and thermal stability of SiO2 modified BiFeO3–BaTiO3 high temperature piezoceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Development of high-temperature piezoelectric sensors is of great interest for harsh environment applications. The principal challenge for piezoelectric materials is their limitation for upper working temperature due to low Curie temperature and increasing conductivity at high temperatures. The effects of SiO2 addition on the microstructure, ferro-piezoelectric and thermal stability of 0.8BiFeO3–0.2BaTiO3 lead-free piezoelectric ceramics were investigated. XRD results indicated all the samples crystallized into the rhombohedrally distorted perovskite structure which was independent of the SiO2 addition. SiO2 could obviously inhibit the grain growth possibly due to the accumulation of SiO2 at the grain boundary. The leakage currents of 0.8BiFeO3–0.2BaTiO3 piezoceramics were remarkably reduced by certain amounts of added SiO2, facilitating the poling process, and improved their piezoelectric properties effectively. The optimal properties were obtained at the composition with 0.15 wt% SiO2 addition which retained high transition temperature ~628 °C. The samples sintered in O2 exhibited better thermal stability than those sintered in reduced atmospheres. Thus, SiO2 proved to be a successful additive to improve the 0.8BiFeO3–0.2BaTiO3 piezoceramics for high-temperature applications, as a result of increased resistivity and enhanced piezoelectric activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.J. Zhang, F.P. Yu, J. Am. Ceram. Soc. 94, 3153 (2011)

    Article  Google Scholar 

  2. Q. Zhou, C.R. Zhou, H.B. Yang, G.H. Chen, W.Z. Li, H. Wang, J. Am. Ceram. Soc. 95, 3889 (2012)

    Article  Google Scholar 

  3. R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Appl. Acoust. 41, 299 (1994)

    Article  Google Scholar 

  4. S.J. Zhang, R. Xia, L. Lebrun, D. Anderson, T.R. Shrout, Mater. Lett. 59, 3471 (2005)

    Article  Google Scholar 

  5. H. Fritze, J. Electroceram. 26, 122 (2011)

    Article  Google Scholar 

  6. H.X. Yan, H.T. Zhang, R. Ubic, M.J. Reece, J. Liu, Z.J. Shen, Z. Zhang, Adv. Mater. 17, 1261 (2005)

    Article  Google Scholar 

  7. H.X. Yan, H.T. Zhang, M.J. Reece, X.L. Dong, Appl. Phys. Lett. 87, 082911 (2005)

    Article  Google Scholar 

  8. Z.H. Yao, H.X. Liu, H. Hao, M.H. Cao, J. Appl. Phys. 109, 014105 (2011)

    Article  Google Scholar 

  9. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, Phys. Rev. B 71, 014113 (2005)

    Article  Google Scholar 

  10. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, O. Eriksson, Phys. Rev. B 74, 224412 (2006)

    Article  Google Scholar 

  11. M. Kumar, K.L. Yadav, Appl. Phys. Lett. 91, 112911 (2007)

    Article  Google Scholar 

  12. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  Google Scholar 

  13. C. Guo, S. Pu, Z.L. Chen, M.Y. Li, J.F. Cao, H.M. Zou, Ceram. Int. 36, 507 (2010)

    Article  Google Scholar 

  14. G.L. Yuan, S.W. Or, Y.P. Wang, Z.G. Liu, J.M. Liu, Solid State Commun. 138, 76 (2006)

    Article  Google Scholar 

  15. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)

    Article  Google Scholar 

  16. H. Uchida, R. Ueno, H. Funakubo, S. Koda, J. Appl. Phys. 100, 014106 (2006)

    Article  Google Scholar 

  17. A. Kumar, D. Varshney, Ceram. Int. 38, 3935 (2012)

    Article  Google Scholar 

  18. F. Yan, M.O. Lai, L. Lu, J. Phys. D Appl. Phys. 45, 325001 (2012)

    Article  Google Scholar 

  19. H.R. Liu, Y.X. Sun, J. Phys. D Appl. Phys. 40, 7530 (2007)

    Article  Google Scholar 

  20. Y.K. Jun, W.T. Moon, C.M. Chang, H.S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, S.H. Hong, Solid State Commun. 135, 133 (2005)

    Article  Google Scholar 

  21. Z. Hu, M. Li, B. Yu, L. Pei, J. Liu, J. Wang, X. Zhao, J. Phys. D Appl. Phys. 42, 185010 (2009)

    Article  Google Scholar 

  22. M.T. Buscaglia, L. Mitoseriu, V. Buscaglia, I. Pallecchi, M. Viviani, P. Nanni, A.S. Siri, J. Eur. Ceram. Soc. 26, 3027 (2006)

    Article  Google Scholar 

  23. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855 (2000)

    Article  Google Scholar 

  24. Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 95, 670 (2012)

    Article  Google Scholar 

  25. R.T. Smith, G.D. Achenbach, R. Gerson, W.J. James, J. Appl. Phys. 39, 70 (1968)

    Article  Google Scholar 

  26. J.G. Chen, J.R. Cheng, J. Alloys Compd. 589, 115 (2014)

    Article  Google Scholar 

  27. C.R. Zhou, H.B. Yang, Q. Zhou, G.H. Chen, W.Z. Li, H. Wang, J. Mater. Sci. Mater. Electron. 24, 1685 (2013)

    Article  Google Scholar 

  28. L.H. Yin, B.C. Zhao, J. Fang, R.R. Zhang, X.W. Tang, W.H. Song, J.M. Dai, Y.P. Sun, J. Solid State Chem. 194, 194 (2012)

    Article  Google Scholar 

  29. Q. Zhou, C.R. Zhou, H.B. Yang, C.L. Yuan, G.H. Chen, L. Cao, Q.L. Fan, J. Mater. Sci. Mater. Electron. 25, 196 (2014)

    Article  Google Scholar 

  30. Y. Wan, Y. Li, Y.Q. Guo, Q.J. Zheng, X.C. Wu, C.G. Xu, D.M. Lin, J. Mater. Sci. Mater. Electron. 25, 1534 (2014)

    Article  Google Scholar 

  31. K. Yu, Y. Niu, Y. Bai, Y. Zhou, H. Wang, Appl. Phys. Lett. 102, 102903 (2013)

    Article  Google Scholar 

  32. K. Yu, H. Wang, Y. Zhou, Y. Bai, Y. Niu, J. Appl. Phys. 113, 034105 (2013)

    Article  Google Scholar 

  33. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968)

    Article  Google Scholar 

  34. X. Wang, Z. Shen, T. Sang, X. Cheng, M. Li, L. Chen, Z. Wang, J. Colloid Interface Sci. 341, 23 (2010)

    Article  Google Scholar 

  35. T. Gholamia, M. Salavati-Niasaria, M. Bazarganipourc, E. Nooria, Superlattices Microstruct. 61, 33 (2013)

    Article  Google Scholar 

  36. K. Tadanaga, K. Morita, K. Mori, M. Tatsumisago, J. Sol-Gel. Sci. Technol. 68, 341 (2013)

    Article  Google Scholar 

  37. M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo, Appl. Phys. Lett. 88, 042907 (2006)

    Article  Google Scholar 

  38. M.K. Singh, S. Ryu, H.M. Jang, Phys. Rev. B 72, 132101 (2005)

    Article  Google Scholar 

  39. H. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40, 4759 (2014)

    Article  Google Scholar 

  40. H.B. Yang, C.R. Zhou, X.Y. Liu, Q. Zhou, G.H. Chen, H. Wang, W. Li, Mater. Res. Bull. 47, 4233 (2012)

    Article  Google Scholar 

  41. Y.R. Zhang, J.F. Li, B.P. Zhang, C.E. Peng, J. Appl. Phys. 103, 074109 (2008)

    Article  Google Scholar 

  42. X.X. Wang, X.G. Tang, K.W. Kwok, H.L.W. Chan, C.L. Choy, App. Phys. A 80, 1071 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support of the International Technology Cooperation Project from the Ministry of Science and Technology of China (2011DFA52680), Natural Science Foundation of China (Nos. 51372191 and 51102189), National Key Basic Research Program of China (No. 2015CB654601), the Fundamental Research Funds for the Central Universities (No. 2012-IV-006), and State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (KF201314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Xu, C., Wang, Z. et al. Microstructure, ferro-piezoelectric and thermal stability of SiO2 modified BiFeO3–BaTiO3 high temperature piezoceramics. J Mater Sci: Mater Electron 26, 479–484 (2015). https://doi.org/10.1007/s10854-014-2424-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2424-y

Keywords

Navigation