Skip to main content
Log in

Composition control of co-electroplating Au–Sn deposits using experimental strategies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The optimal electroplating parameters for a pulse-current co-electroplating system of Au–Sn deposits in a non-cyanide electrolyte were investigated using experimental strategies, including fractional factorial design (FFD) and central composite design (CCD) coupled with the response surface methodology. pH value, ethylene diamine tetraacetic acid (EDTA) concentration, catechol concentration and metallic ions molar ratio (i.e., [Au]/[Sn]) were identified as the key factors affecting the composition of Au–Sn deposits in the FFD study. A reliable model between the response variable and the key factors of pH value, EDTA concentration and catechol concentration was established for the composition control of Au–Sn alloys in the CCD study. The standard deviation of the response variable (tin content) was set at the minimum level to determine the optimal co-electroplating parameters for the predicted composition value of Au–Sn deposits. Pair T test was conducted to validate both predicted and observed composition values under the optimal electroplating parameters, and the composition of Au–Sn deposits can be precisely controlled based on the established model. Scanning electron microscope observation and X-ray diffractometer analysis revealed that the morphology and crystalline of the Au–Sn deposits were composition-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Arai, H. Akatsuka, N. Kaneko, J. Electrochem. Soc. 150, C730–C734 (2003)

    Article  Google Scholar 

  2. S. Joseph, G.J. Phatak, T. Seth, K. Gurunathan, D.P. Amalnerkar, T.R.N. Kutty, in IEEE TENCON 2003 Conference on Convergent Technologies for the Asia-Pacific Region, (IEEE, New York, 2003), pp. 1367–1371

  3. Y.D. Tsai, C.Y. Yu, C.C. Hu, J.G. Duh, J. Electrochem. Soc. 159(2), D108–D113 (2012)

    Article  Google Scholar 

  4. H. Oppermann, Engineering materials and processes, in Materials for information technology: devices, interconnects and packaging, ed. by E. Zschech, C. Whelan, T. Mikolajick (Springer, New York, 2003), pp. 377–390

    Google Scholar 

  5. J.W. Yoon, H.S. Chun, S.B. Jung, J. Mater. Res. 22, 1219–1229 (2007)

    Article  Google Scholar 

  6. J. Wei, Cryst. Res. Technol. 41, 150–153 (2006)

    Article  Google Scholar 

  7. G.S. Matijasevic, C.C. Lee, J. Electron. Mat. 18, 327–337 (1989)

    Article  Google Scholar 

  8. A. Katz, H. Lee, K. Tai, Mater. Chem. Phys. 37, 303–328 (1994)

    Article  Google Scholar 

  9. W. Sun, D.G. Ivey, Mater. Sci. Eng. B 65, 111–122 (1999)

    Article  Google Scholar 

  10. Y. Liu, M.L. Huang, in 2009 International conference on electronic packaging technology and high density packaging, (IEEE, New York, 2009), pp. 802–805

  11. B. Bozzini, A. Fanigliulo, G. Giovannelli, S. Natali, C. Mele, J. Appl. Electrochem. 33, 747–754 (2003)

    Article  Google Scholar 

  12. T.N. Vorobyova, O.N. Vrublevskaya, Surf. Coat. Tech. 204, 1314–1318 (2010)

    Article  Google Scholar 

  13. J.L. Pan, M.L. Huang, in 2010 International conference on electronic packaging technology and high density packaging, (IEEE, New York, 2010), pp. 283–287

  14. J.A. Cornall, How to apply response surface methodology, 2nd edn. (American Society for Quality Control, Wisconsin, 1990)

    Google Scholar 

  15. D.C. Montgomery, Design and analysis of experiments, 4th edn. (Wiley, Singapore, 1997)

    Google Scholar 

  16. G.E.P. Box, W.G. Hunter, J.S. Hunter, Statistics for experiments (Wiley, New York, 1978)

    Google Scholar 

  17. X.J. Tang, G.Q. He, Q.H. Chen, X.Y. Zhang, M. Ali, Bioresour. Technol. 93, 175–181 (2004)

    Article  Google Scholar 

  18. T.A. Green, S. Roy, J. Electrochem. Soc. 153, C157–C163 (2006)

    Article  Google Scholar 

  19. A. He, Q. Liu, D.G. Ivey, J. Mater. Sci. Mater. Electron. 17, 63–70 (2006)

    Article  Google Scholar 

  20. J. Horkans, L.T. Romankiw, J. Electrochem. Soc. 124, 1499–1505 (1977)

    Article  Google Scholar 

  21. R.M. Cigala, F. Crea, C. De Stefano, G. Lando, G. Manfredi, S. Sammartano, J. Mol. Liq. 165, 143–153 (2012)

    Article  Google Scholar 

  22. W. Chang, K. Li, Concise handbook of analytical chemistry (Beijing University Publishing House, Beijing, 1981)

    Google Scholar 

  23. N. Kubota, E. Sato, Electrochim. Acta 30, 305–309 (1985)

    Article  Google Scholar 

  24. Y.D. Tsai, C.C. Hu, J. Electrochem. Soc. 156, D490–D496 (2009)

    Article  Google Scholar 

  25. A. Vicenzo, M. Rea, L. Vonella, M. Bestetti, P.L. Cavallotti, J. Solid State Electrochem. 8, 159–166 (2004)

    Article  Google Scholar 

  26. W. Sun, D.G. Ivey, J. Mater. Sci. 36, 757–766 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 51171036 and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M.L., Huang, F.F., Pan, J.L. et al. Composition control of co-electroplating Au–Sn deposits using experimental strategies. J Mater Sci: Mater Electron 25, 4933–4942 (2014). https://doi.org/10.1007/s10854-014-2254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2254-y

Keywords

Navigation