Skip to main content
Log in

Dielectric and spectroscopic features of ZnO–ZnF2–B2O3:MoO3 glass ceramic—a possible material for plasma display panels

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO–ZnF2–B2O3 borate glass mixed with different concentrations of MoO3 were synthesized and subsequently crystallized. The X-ray diffraction studies revealed that the samples were embedded with crystalline phases in which molybdenum ions exist in Mo6+ and Mo5+ states. The results of spectroscopic studies (viz., optical absorption and electron spin resonance) have revealed that the there is an increasing proportion of Mo5+ ions with increase in the concentration of MoO3 in the glass ceramic. The results of photoluminescence spectra have indicated that if the care is taken to minimize Mo5+ ion concentration, these glass ceramics are suitable for light emission in the blue, green and red regions. The analysis of the results of IR spectra have indicated that with increase in the content of MoO3 there is an increasing degree of disorder in the glass network. The room temperature dielectric constant of these glass ceramics containing even the highest concentration of MoO3 is always found to be in between 11.5 and 12.4 suggesting that these glass ceramics would be suitable for dielectric layer in plasma display panels (PDP). The dielectric parameters have exhibited relaxation character; the relaxation effects have been attributed to molybdenyl complexes. The observed increase in the electrical conductivity with MoO3 content is attributed to the contribution of polaronic transfer between Mo5+ ⟷ Mo6+ ions. Additionally, the substantial decrement in jump distance for zinc ions between the two sites in the ceramic network (because of increase in the concentration of dangling bonds) is also found to contribute to the conductivity. The value of dielectric breakdown strength for the studied materials is measured to be in the range of 10.54–12.9 kV/cm which is far greater than the required value for a material to be used as dielectric layer in PDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.R. Clarke, J Am Ceram Soc 82, 485–502 (1999)

    Article  Google Scholar 

  2. B.L. Zhu, D.W. Zeng, W.L. Song, A.H. Wang, Mater Chem Phys 89, 148–153 (2005)

    Article  Google Scholar 

  3. D. Liu, D. Tang, L. Ci, X. Yan, Y.N. Liang, Z. Zhou, H. Yuan, W. Zhou, G. Wang, Chin Phys Lett 20, 928–931 (2003)

    Article  Google Scholar 

  4. K.J. Kim, Y.R. Park, Appl Phys Lett 22, 475–477 (2001)

    Article  Google Scholar 

  5. W.S. Shi, O. Agyeman, C.N. Xu, J Appl Phys 91, 5640–5644 (2002)

    Article  Google Scholar 

  6. S.E. Derenzo, M.K. Klintenberg, Nucl Instr Meth Phys Res A 486, 214–219 (2002)

    Article  Google Scholar 

  7. T. Shinoda, M. Wakitani, T. Nanto, N. Awaji, S. Kanagu, Electron Dev 47, 77–81 (2000)

    Article  Google Scholar 

  8. F.H. Wang, H.P. Chang, C.C. Tseng, C.C. Huang, Surf Coat Tech 205, 5269–5277 (2011)

    Article  Google Scholar 

  9. L. Ding, Y. Yang, X. Jiang, C. Zhu, G. Chen, J. Non-Cryst, Solids 354, 1382–1385 (2008)

    Google Scholar 

  10. M. Abdel-Baki, F. El-Diasty, J Solid State Chem 184, 2762–2769 (2011)

    Article  Google Scholar 

  11. S. Bale, N.S. Rao, S. Rahman, Solid State Sci 10, 326–331 (2008)

    Article  Google Scholar 

  12. Bondar IA, Toropov NA (1964) In: Porai-Koshits EA (ed) The structure of glass, vol 3, p 35

  13. G.V. Rao, P.Y. Reddy, N. Veeraiah, Mater Lett 57, 403–408 (2002)

    Article  Google Scholar 

  14. P.W. McMillan 2nd (ed.), Glass-ceramics (Academic Press, London, 1979)

    Google Scholar 

  15. L.S. Rao, M.S. Reddy, D.K. Rao, N. Veeraiah, J Solid State Sci 11, 578–587 (2009)

    Article  Google Scholar 

  16. Z. Hussain, J Electron Mater 31, 615–630 (2002)

    Article  Google Scholar 

  17. P. Naresh, G. Naga Raju, C.S. Rao, S.V.G.V.A. Prasad, V. Ravi Kumar, N. Veeraiah, Phys B 407, 712–718 (2012)

    Article  Google Scholar 

  18. F. Kohlmuller, Bull. Chim. Fr., 4379 (1968)

  19. J.C. Couturier, Rev Chim Miner 22, 753 (1986)

    Google Scholar 

  20. K.J. Rao, Structural Chemistry of Glasses (Elsevier, Amsterdam, 2002)

    Google Scholar 

  21. K. Chen, Introduction to non-cryst. Semiconductor physics (Chinease Academy Press, Beijing, 1987)

    Google Scholar 

  22. G.L. Flower, G.S. Baskaran, N. Veeraiah, Mater Chem Phys 100, 211–216 (2006)

    Article  Google Scholar 

  23. W. Vogel, Glass chemistry (Springer, Berlin, 1994)

    Book  Google Scholar 

  24. N. Machida, H. Eckert, Solid State Ion 107, 255–268 (1998)

    Article  Google Scholar 

  25. T. Komatsu, N. Soga, M. Kunugi, J Appl Phys 50, 6469–6474 (1979)

    Article  Google Scholar 

  26. G. Srinivasarao, N. Veeraiah, J Solid State Chem 166, 104–117 (2002)

    Article  Google Scholar 

  27. C.J.F. Böttcher, P. Bordewijk, Theory of electrical polarization (Elsevier, Amsterdam, 1978)

    Google Scholar 

  28. K. Srilatha, K.S. Rao, Y. Gandhi, V.R. Kumar, N. Veeraiah, J Alloys Compd 507, 391–398 (2010)

    Article  Google Scholar 

  29. T. Srikumar, ChS Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, N. Veeraiah, J Phys Chem Solids 72, 190–200 (2011)

    Article  Google Scholar 

  30. L. Pavic, N.N. Rao, A.M. Milankovic, A. Santic, V. Ravi Kumar, M. Piasecki, I.V. Kityk, N. Veeraiah, Ceram Int 40, 5989–5996 (2014)

    Article  Google Scholar 

  31. E.T.Y. Lee, E.R.M. Taylor, J Phys Chem Solids 66, 47–51 (2005)

    Article  Google Scholar 

  32. R.K. Brow, J. Non-Cryst, Solids 194, 267–273 (1996)

    Google Scholar 

  33. P. Syam Prasad, M.S. Reddy, V. Ravi Kumar, N. Veeraiah, Philos Mag 87, 5763–5787 (2007)

    Article  Google Scholar 

  34. F. Branda, A. Buri, A. Marotta, S. Saiello, Thermochim Acta 77, 13–18 (1984)

    Article  Google Scholar 

  35. R. Lordanova, Y. Dimitriev, S. Kassabov, D. Klissurski, J Non Cryst Solids 231, 227–233 (1998)

  36. G. Calas, M. Le Grand, L. Galoisy, D. Ghaleb, J Nucl Mater 322, 15–20 (2003)

    Article  Google Scholar 

  37. O. Cozar, D.A. Magdas, I. Ardelean, Non Cryst Solids 354, 1032–1035 (2008)

    Article  Google Scholar 

  38. B.V.R. Chowdari, P. Pramoda, Kumari. Solid State Ion 113, 665–675 (1998)

    Article  Google Scholar 

  39. N.Y. Garces, M.M. Chirila, H.J. Murphy, J.W. Foise, E.A. Thomas, C. Wicks, K. Grencewicz, L.E. Halliburton, N.C. Giles, J Phys Chem Solids 64, 1195–1200 (2003)

    Article  Google Scholar 

  40. D. Boudlich, M. Haddad, R. Berger, J. Kliava, J Non Cryst Solids 224, 135–142 (1998)

    Article  Google Scholar 

  41. A. Bals, J. Kliava, J Magn Reson 53, 243 (1983)

    Google Scholar 

  42. M. Nagarjuna, T. Satyanarayana, V. Ravi Kumar, N. Veeraiah, Phys B 404, 3748–3755 (2009)

    Article  Google Scholar 

  43. R. Berger, P. Beziade, A. Levasseur, Y. Servant, J Phys Chem Glasses 31, 231 (1990)

    Google Scholar 

  44. A.V. Rao, C. Laxmikanth, B.A. Rao, N. Veeraiah, J Phys Chem Solids 67, 2263–2274 (2006)

    Article  Google Scholar 

  45. D.K. Durga, N. Veeraiah, J Phys Chem Solids 64, 133–146 (2003)

    Article  Google Scholar 

  46. P.N. Rao, B.V. Raghavaiah, D.K. Rao, N. Veeraiah, Mater Chem Phys 91, 381–390 (2005)

    Article  Google Scholar 

  47. T. Satyanarayana, I.V. Kityk, M. Piasecki, P. Bragiel, M.G. Brik, Y. Gandhi, N. Veeraiah, J Phys Condens Matter 21, 245104–245112 (2009)

    Article  Google Scholar 

  48. P. Naresh, G. Naga Raju, V. Ravi Kumar, M. Piasecki, I.V. Kiytyk, N. Veeraiah, Ceram Int 40, 2249–2260 (2014)

    Article  Google Scholar 

  49. P. Raghava Rao, L. Pavić, A. Moguš-Milanković, V. Ravi Kumar, I.V. Kityk, N. Veeraiah, J Non Cryst Solids 358, 3255–3267 (2012)

    Article  Google Scholar 

  50. S. Mukherjee, A.K. Pal, J Phys Condens Matter 20, 255202–255211 (2008)

    Article  Google Scholar 

  51. A. Gajovic, A. Santic, I. Djerdj, N. Tomasic, A. Mogus-Milankovic, D. Sheng Su, J Alloys Compd 479, 525–531 (2009)

    Article  Google Scholar 

  52. S.R. Elliott, Adv Phys 36, 135 (1987)

    Article  Google Scholar 

  53. C. Cramer, K. Funke, B. Roling, T. Saatkamp, D. Wilmer, M.D. Ingram, A. Pradel, M. Ribes, G. Taillades, Solid State Ion 86, 481–486 (1996)

    Article  Google Scholar 

  54. I.G. Austin, N.F. Mott, Adv Phys 18, 41–102 (1969)

    Article  Google Scholar 

  55. R. Vijay, P. Ramesh Babu, B.V. Raghavaiah, P.M. Vinaya Teja, M. Piasecki, N. Veeraiah, D. Krishan Rao, J Non Cryst Solids 386, 67–75 (2014)

    Article  Google Scholar 

  56. S. Joon-Young, S. Young Cho, Displays 27, 112–116 (2006)

Download references

Acknowledgments

The authors are grateful to DST, Govt. of India for the financial support through FIST programme to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Veeraiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naresh, P., Naga Raju, G., Reddy, M.S. et al. Dielectric and spectroscopic features of ZnO–ZnF2–B2O3:MoO3 glass ceramic—a possible material for plasma display panels. J Mater Sci: Mater Electron 25, 4902–4915 (2014). https://doi.org/10.1007/s10854-014-2251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2251-1

Keywords

Navigation