Skip to main content
Log in

Optical and electrochromic properties of annealed lithium-molybdenum-bronze thin films

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Optical band gaps, Urbach inverse slopes, and coloration bands of various samples of annealed, microcrystalline LixMoO3-bronze thin films in the concentration range 0<x<0.6 were determined over the photon energy range from 0.4 eV to 4.2 eV. On investigation, it is learned that the measured, optical band gaps do not shift rigidly over the annealing temperature range 293≤T≤423 K and, therefore, do not reveal the Burstein-Moss effect or reflect any stable, crystallographic phase transformation during any investigated annealing cycle. A model relating the temperature-dependent optical gap to the real part of the refractive index has also been developed, and this model fits very well to the annealed data within a maximum error of about 20%. Next, using an oscillator model, a phonon energy of ∼0.08 eV was obtained, which is very close to the characteristic phonon energy of the material, MoO3. Using this model, it becomes more certain that the contributions to the Urbach absorption edge for the annealed-molybdenum bronzes are coming from the structural and compositional disorder. In another finding, it was found that the absorption-peak energy for the annealed data was about 1.5–1.6 eV, which is still broad and asymmetrical, and therefore, it is almost of the Mo6+ (or Mo4+)-Mo5+ intervalence or polaronic type. Using the polaron model, the half-bandwidth of the coloration bands of investigated, annealed LixMoO3-thin films was found to be almost constant, which is consistent with the nonrigid band behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Toyoda, J. Appl. Phys. 63, 5166 (1988).

    Article  CAS  Google Scholar 

  2. J. Magai, T. Kamimori, and M. Mizuhashi, SPIE 502, 59 (1984).

    Google Scholar 

  3. M. Green, H.I. Evans, Z. Hussain, 2nd Int. Symp. Polymer Electrolytes, ed. B. Scrosati (London: Elsevier, 1990), pp. 449–459.

    Google Scholar 

  4. A. Abdellaoui, L. Martin, and A. Donnadieu, Phys. Status Solidi (a) 109, 455 (1988).

    Article  CAS  Google Scholar 

  5. M. Nagasu and N. Koshida, J. Appl. Phys. 71, 398 (1992).

    Article  CAS  Google Scholar 

  6. S.K. Deb, Sol. Energy Mater. Sol. Cells 25, 327 (1992).

    Article  CAS  Google Scholar 

  7. M.R. Tubbs, Phys. Status Solidi (a) 21, 253 (1974).

    Article  CAS  Google Scholar 

  8. S.K. Deb and J.A. Chopoorian, J. Appl. Phys. 37, 4818 (1966).

    Article  CAS  Google Scholar 

  9. J.G. Choi, R.L. Curl, and L.T. Thompson, J. Catal. 218, 146 (1994); see also J.G. Choi and L.T. Thompson, Appl. Surf. Sci. 93, 143 (1996).

    Google Scholar 

  10. A.I. Gavrilyuk, N.M. Reinov, and F.A. Chudnovskii, Sov. Tech. Phys. Lett. 5, (1979); and Sov. Tech. Phys. Lett. 6, 512 (1980).

    Google Scholar 

  11. C. Julien, L. El-Farh, M. Balkanski, O.M. Hussain, and G.A. Nazri, Appl. Surf. Sci. 65/66, 325 (1993).

    Article  Google Scholar 

  12. M.S. Whittingham, Prog. Solid State Chem. 12, 41 (1978); and J. Electrochem. Soc. 123, 315 (1976).

    Article  CAS  Google Scholar 

  13. F. Benkhelife, P.V. Ashrit, G. Bader, F.E. Girouard, and V.-V. Truong, J. Appl. Phys. 74, 4691 (1993).

    Article  Google Scholar 

  14. F. Bonio, L.P. Bicelli, B. Rivolta, M. Lazzari, and F. Festarazzi, Solid State Ionics 17, 21 (1985).

    Article  Google Scholar 

  15. V. Wittwer, O.F. Schirmer, and P. Schlotter, Solid State Commun. 25, 977 (1978).

    Article  CAS  Google Scholar 

  16. B.K. Chakraverty, J. Phys. 42, 1351 (1981).

    CAS  Google Scholar 

  17. A. Guerfi, R.W. Paynter, and L.H. Dao, J. Electrochem. Soc. 142, 3457 (1995).

    Article  CAS  Google Scholar 

  18. N.S. McIntyre, D.D. Johonston, L.L. Coatsworth, R.D. Davidson, and J.R. Brown, Surf. Interface Anal. 15, 265 (1990).

    Article  CAS  Google Scholar 

  19. M. Anwar, C.A. Hogarth, and R. Bulpett, J. Mater. Sci. 24, 3087 (1989).

    Article  CAS  Google Scholar 

  20. J. Zhang, C.E. Tracy, D.K. Bension, and S.K. Deb, J. Mater. Res. 8, 80 (1993).

    Google Scholar 

  21. C. Bechinger, M.S. Burdis, and J.G. Zhang, Solid State Commun. 101, 753 (1997).

    Article  CAS  Google Scholar 

  22. Z. Hussain (Ph.D. Thesis, University of London, 2001).

  23. M. Green and Z. Hussain, J. Appl. Phys. 74, 3451 (1993).

    Article  CAS  Google Scholar 

  24. H.I. Evans (Ph.D. Thesis, University of London, 1987).

  25. J.W. Rabalais, R.J. Colton, and A.M. Guzman, Chem. Phys. Lett. 29, 131 (1974).

    Article  CAS  Google Scholar 

  26. L. Kihlborg and A. Magneli, Acta Chem. Scand. 9, 471 (1955).

    CAS  Google Scholar 

  27. Y. Shigesato, A. Murayama, T. Kamimori, and K. Matsuhiro, Appl. Surf. Sci. 33/34, 804 (1988); and Y. Shigesato, Jpn. J. Appl. Phys. 30, 145 (1991).

    Article  Google Scholar 

  28. J.V. Gabrusenoks, P.D. Chikmach, A.R. Lusis, J.J. Kleperis, and G.M. Ramans, Solid State Ionics 14, 25 (1984).

    Article  Google Scholar 

  29. V.I. Kukuyev, E.A. Tutov, E.P. Domashevskaya, M.I. Yanovskaya, I.E. Obvintseva, and Y.N. Venevtsev, Sov. Phys. Tech. Phys. 32, 1176 (1987).

    Google Scholar 

  30. D.J. De Smet and J.L. Ord, Electrochem. Soc. 130, 280 (1983); see also D.J. De Smet, Electrochem. Acta 21, 1137 (1976).

    Article  Google Scholar 

  31. D.J. De Smet and J.L. Ord, J. Electrochem. Soc. 134, 1734 (1987).

    Article  Google Scholar 

  32. M. Green and Z. Hussain, J. Appl. Phys. 69, 7788 (1991).

    Article  CAS  Google Scholar 

  33. T. Ohka and S.-I. Ikawa, J. Appl. Phys. 64, 4141 (1988).

    Article  Google Scholar 

  34. J.R. Bellinghan, W.A. Phillips, and C.J. Adkins, J. Phys. Condens. Mater. 2, 6207 (1990).

    Article  Google Scholar 

  35. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).

    CAS  Google Scholar 

  36. R. Swan, A.K. Ray, and C.A. Hogarth, Phys. Status Solidi (a) 127, 555 (1991).

    Article  CAS  Google Scholar 

  37. T.S. Moss, Optical Properties of Semiconductors (London: Butterworth, 1973).

    Google Scholar 

  38. G.S. Nadkarni and J.G. Simmons, J. Appl. Phys. 41, 545 (1970); and J. Appl. Phys. 43, 3741 (1972).

    Article  CAS  Google Scholar 

  39. D.L. Wood and J. Tauc, Phys. Rev. B5, 3144 (1972).

    Google Scholar 

  40. D. Redfield and M.A. Afromowitz, Appl. Phys. Lett. 11, 138 (1967).

    Article  CAS  Google Scholar 

  41. S. John and C.H. Grein, Rev. Solid State Sci. 4, 1 (1990).

    CAS  Google Scholar 

  42. J. Lipavicius, E. Cijauskas, and A. Audzijonis, Phys. Status Solidi (a) 148, K97 (1988).

  43. F. Denichelis, G. Kaniadakis, R. Spagnolo, and E. Tresso, Philos. Mag. B60, 713 (1989).

    Google Scholar 

  44. S. John and C. Soukoulis, Phys. Rev. Lett. 57, 1777 (1986).

    Article  CAS  Google Scholar 

  45. H.W. Martienssen, J. Phys. Chem. Solids 2, 257 (1957).

    Article  CAS  Google Scholar 

  46. M. Anwar and C.A. Hogarth, Phys. Status Solidi (a) 109, 469 (1988).

    Article  CAS  Google Scholar 

  47. O.F. Schirmer, V. Wittwer, G. Baur, and G. Brandt, J. Electrochem. Soc. 124, 749 (1977); and O.F. Schirmer, J. Phys. (Paris) 6, 479 (1980).

    Article  CAS  Google Scholar 

  48. P.D. Cikmach, J.J. Kleperis, A.R. Lusis, and G.M. Ramans, Phys. Status Solidi (a) 90, K1 (1985).

  49. S.-H. Lee, H.M. Cheong, C.E. Tracy, A. Mascarenhas, D.K. Benson, and S.K. Deb, Electrochimica Acta 44, 3111 (1999).

    Article  CAS  Google Scholar 

  50. E. Iguchi and K. Akashi, Jpn. J. Phys. Soc. 61, 3385 (1992).

    Article  CAS  Google Scholar 

  51. G. Anderson and A. Magneli, Acta Chem. Scand. 4, 793 (1950); see also G. Anderson, Acta Chem. Scand. 7, 154 (1953).

    Article  Google Scholar 

  52. E.M. McCarron III, J. Chem. Soc. Chem. Commun. 198, 336 (1986).

    Article  Google Scholar 

  53. S. Badilescu, K. Boufker, P.V. Ashrit, and V.V. Truong, Proc. Soc. Photo. Opt. Instrum. Eng. 1401, 119 (1990); see also J. Electrochem. Soc. 136, 3599 (1989).

    Google Scholar 

  54. P.K. Shen, J. Syed-Bokhari, and A.C.C. Tseung, J. Electrochem. Soc. 138, 2778 (1991); see also P.K. Shen and A.C.C. Tseung, J. Mater. Chem. 2, 1141 (1992).

    Article  CAS  Google Scholar 

  55. P.F. Carcia and E.M. Mc Carron III, Thin Solid Films 155, 53 (1987).

    Article  CAS  Google Scholar 

  56. T. Hirata, Appl. Surf. Sci. 40, 179 (1989).

    Article  CAS  Google Scholar 

  57. J.B. Parise, E.M. McCarron III, and A.W. Sleight, Mater. Res. Bull. 22, 803 (1987).

    Article  CAS  Google Scholar 

  58. M. Shiojiri, T. Miyano, and C. Kaito, Jpn. J. Appl. Phys. 18, 1937 (1979); and Jpn. J. Appl. Phys. 17, 567 (1978).

    Article  CAS  Google Scholar 

  59. J. Purans, A. Kuzmin, A. Balerna, E. Bernieri, and E. Burattini, Proc. 2nd. Europ. Conf. on Progress in X-ray Synchrotron Radiation Research (Bologna, Italy: Ital. Phys. Soc., 1990), p. 679.

    Google Scholar 

  60. A. Balerna, E. Bernieri, E. Burattini, A. Kuzmin, A. Lusis, J. Purans, and P. Cikmach, Nucl. Instrum. Methods Phys. Res. A308, 234 (1991).

    CAS  Google Scholar 

  61. N. Miyata and S. Akiyoshi, J. Appl. Phys. 58, 1651 (1985).

    Article  CAS  Google Scholar 

  62. P.G. Dickens and G.J. Reynolds, Solid State Ionics 5, 331 (1981).

    Article  CAS  Google Scholar 

  63. T.A. Bither, J.L. Gillson, and H.J. Young, Inorg. Chem. 5, 1559 (1966).

    Article  CAS  Google Scholar 

  64. A.K. Ganguli, L. Ganapathi, J. Gopalakrishnan, and C.N.R. Rao, J. Solid State Chem. 74, 228 (1988).

    Article  CAS  Google Scholar 

  65. J.O. Besenhard and R. Schollhorn, J. Power Sources 1, 267 (1976–77); see also J. Electrochem. Soc. 124, 968 (1977).

    Article  Google Scholar 

  66. A.M. Chippindale, P.G. Dickens, and A.V. Powell, Prog. Solid State Chem. 21, 133 (1991); and A.M. Chippindale, P.G. Dickens, and A.V. Powell, J. Solid State Chem. 93, 526 (1991).

    Article  CAS  Google Scholar 

  67. D.W. Murphy, P.A. Christian, F.J. DiSalvo, and J.V. Waszczak Carides, Inorg. Chem. 18, 2800 (1979); J. Electrochem. Soc. 126, 3 (1979); and J. Electrochem. Soc. 126, 497 (1979).

    Article  CAS  Google Scholar 

  68. S.K. Deb, Proc. R. Soc. A304, 211 (1968).

    Google Scholar 

  69. M.S. Jagadeesh and V.D. Das, J. Non-Cryst. Solids 28, 327 (1978).

    Article  CAS  Google Scholar 

  70. P.G. Dickens and D.J. Neild, Trans. Faraday Soc. 64, 13 (1968).

    Article  CAS  Google Scholar 

  71. G. Travaglini and P. Wachter, Solid State Commun. 47, 217 (1983); and Solid State Commun. 42, 407 (1982).

    Article  CAS  Google Scholar 

  72. M. Greenblatt, K.V. Ramanujachary, W.H. McCarroll, R. Neifeld, and J.V. Waszczak, Solid State Chem. 59, 149 (1985).

    Article  CAS  Google Scholar 

  73. R.J. Colton, A.M. Guzman, and J.W. Rabalais, J. Appl. Phys. 49, 409 (1978).

    Article  CAS  Google Scholar 

  74. L.E. Firment and A. Ferretti, Surf. Sci. 129, 155 (1983); see also V.E. Henrich, Report Prog. Phys. 48, 1481 (1985).

    Article  CAS  Google Scholar 

  75. S.P. Mekandru and A.B. Anderson, J. Am. Chem. Soc. 110, 2061 (1988).

    Article  Google Scholar 

  76. P. Pichat, M.N. Mozzanega, and C. Hoang-Van, J. Phys. Chem. 92, 467 (1988).

    Article  CAS  Google Scholar 

  77. P.P. Edwards and C.N.R. Rao, The Metallic and Non-Metallic States of Matter (London: Taylor and Francis, 1985), p. 287.

    Google Scholar 

  78. I. Hamberg and C.G. Granqvist, J. Appl. Phys. 60, 123 (1986).

    Article  Google Scholar 

  79. R. Erre, M.H. Legay, and J.J. Fripiat, Surf. Sci. 127, 69 (1983).

    Article  CAS  Google Scholar 

  80. D. Tinet, P. Canesson, H. Estrade, and J.J. Fripiat, J. Phys. Chem. Solids 41, 583 (1979).

    Article  Google Scholar 

  81. M. Rothschild and A.R. Forte, Appl. Phys. Lett. 59, 1790 (1991).

    Article  CAS  Google Scholar 

  82. Z. Hussain, J. Mater. Res. 16, 2695 (2001).

    CAS  Google Scholar 

  83. L. Tichy, E. Sleeckx, P. Nagels, and H. Ticha, Philos. Mag. B73, 213 (1996).

    Google Scholar 

  84. E. Burstein, Phys. Rev. 93, 632 (1954).

    Article  CAS  Google Scholar 

  85. T.S. Moss, Proc. Phys. Soc. London B 67, 775 (1954).

    Article  Google Scholar 

  86. P.J.L. Herve and L.K.J. Vandamme, J. Appl. Phys. 77, 5476 (1995).

    Article  CAS  Google Scholar 

  87. T. He, P. Ehrhart, and P. Meuffels, J. Appl. Phys. 79, 3219 (1996).

    Article  CAS  Google Scholar 

  88. A. Sumi and Y. Toyozawa, J. Phys. Soc. Jpn. 31, 342 (1971); see also J. Phys. Soc. Jpn. 55, 137 (1973).

    Article  CAS  Google Scholar 

  89. T. Skettrup, Phys. Rev. B18, 2622 (1978).

    Google Scholar 

  90. G.A. Medvedkin, Y.V. Rud, and M.A. Tairov, Phys. Status Solidi B144, 809 (1987).

    Google Scholar 

  91. T. Shioda, S. Chichibu, T. Irie, and H. Nakanishi, J. Appl. Phys. 80, 1106 (199).

    Google Scholar 

  92. M.V. Kurik, Phys. Status Solidi (a) 8, 9 (1971).

    Article  CAS  Google Scholar 

  93. D. Emin, Phys. Rev. B48, 13691 (1993).

    Google Scholar 

  94. C. Bechinger, M.S. Burdis, and J.G. Zhang, Solid State Commun. 101, 753 (1997).

    Article  CAS  Google Scholar 

  95. J.G. Zhang, D.K. Benson, C.E. Tracy, S.K. Deb, A.W. Czanderna, and C. Bechinger, J. Electrochem. Soc. 144, 2022 (1997).

    Article  CAS  Google Scholar 

  96. J.B. Goodenough, Progress in Solid State Chemistry, ed. H. Reiss (London: Pergamon, 1971), vol. 5, p. 145.

    Google Scholar 

  97. O.F. Schirmer and E. Salje, Solid State Commun. 33, 333 (1980).

    Article  CAS  Google Scholar 

  98. E. Saje and B. Guttler, Philos. Mag. B50, 607 (1984).

    Google Scholar 

  99. C.H. Grein and S. John, Phys. Rev. B36, 7457 (1987).

    Google Scholar 

  100. M. Green and Z. Hussain, J. Appl. Phys. 69, 7788 (1991).

    Article  CAS  Google Scholar 

  101. N.F. Mott and E.A. Davis, eds., Electronic Processes in Non-Crystalline Materials, (Oxford: Oxford University Press, 1979), pp. 272–300; and Philos. Mag. 22, 903 (1970).

    Google Scholar 

  102. S.K. Deb, Sol. Energy Mater. Sol. Cells 39, 191 (1995).

    Article  CAS  Google Scholar 

  103. A. Nakamura, K. Nakada, Y. Ito, and E. Koishi, J. Appl. Phys. 57, 135 (1985).

    Article  CAS  Google Scholar 

  104. B.W. Faughnan and R.S. Crandall, Topics in Applied Physics, ed. J.I. Pankove (Berlin: Springer-Verlag, 1980), pp. 181–211.

    Google Scholar 

  105. G.M. Ramans, J.V. Gabrusenoks, A.R. Lusis, and A.A. Patmalnieks, J. Non-Cryst. Solids 90, 637 (1987).

    Article  CAS  Google Scholar 

  106. G.M. Ramans, J.V. Gabrusenoks, and A.A. Veispals, Phys. Status Solidi (a), 74, K41 (1982).

  107. J.J. Kleperis, J.V. Gabrusenoks, A.R. Lusis, and G.M. Ramans, Jzv. Akad. Nauk Latv. SSR, Ser. Fiz. I Tekh. Nauk 5, 61 (1982).

    Google Scholar 

  108. A.I. Gavrilyuk, A.A. Mansurov, and F.A. Chudnovskii, Sov. Tech. Phys. Lett. 10, 292 (1984).

    Google Scholar 

  109. B.W. Faughnan, R.S. Crandall, and P.M. Heyman, RCA Rev. 36, 177 (1975).

    CAS  Google Scholar 

  110. T. Yoshimura, J. Appl. Phys. 57, 911 (1985).

    Article  CAS  Google Scholar 

  111. E. Salje and G. Hoppmann, Philos. Mag. B43, 105 (1981); see also G. Hoppman and E. Salje, Optics Commun. 30, 199 (1979).

    Google Scholar 

  112. S. Yamada, Y. Hiruta, N. Suzuki, K. Urabe, M. Kitao, and K. Toyada, Jpn. J. Appl. Phys. 24, 142 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, Z. Optical and electrochromic properties of annealed lithium-molybdenum-bronze thin films. J. Electron. Mater. 31, 615–630 (2002). https://doi.org/10.1007/s11664-002-0133-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0133-4

Key words

Navigation