Skip to main content
Log in

Oxygen vacancy induced dielectric relaxation studies in Bi4−xLaxTi3O12 (x = 0.0, 0.3, 0.7, 1.0) ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, oxygen vacancy induced dielectric relaxations were studied for Lanthanum substituted Bi4−xLaxTi3O12 (x = 0.0, 0.3, 0.7, 1.0) ceramics. X-ray diffraction patterns reveal the formation of single phase orthorhombic structure in all the samples. The partial substitutions of lanthanum ions were found to significantly influence the grain morphology of the sintered ceramics. Temperature dependent dielectric measurements indicate a well-defined dielectric constant peak around 150 °C, with strong frequency dispersion. This dielectric anomaly was attributed to the Maxwell–Wagner space charge relaxation phenomenon related to oxygen vacancies. The space charges related to oxygen vacancies were confirmed by annealing the samples in oxidative atmosphere. The electrical modulus analysis shows that the samples exhibit non-Debye type relaxation behavior. Doubly ionized oxygen vacancies were found to influence the relaxation behaviour at higher temperature. The observed dielectric relaxation as a function of temperature and frequency were explained on the basis of oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Peláiz-Barrancoa, M.E. Mendozab, F. Calderón-Piñara, O. García-Zaldívara, R. López-Nodac, J. de los Santos-Guerrad, J. Antonio Eirasd, Solid State Commun. 144, 425 (2007)

    Article  Google Scholar 

  2. J.F. Scott, C.A. Araujo, Science 246, 1400 (1989)

    Article  Google Scholar 

  3. T. Jardiel, A.C. Caballero, M. Villegas, J. Ceram. Soc. Jpn. 116, 511 (2008)

    Article  Google Scholar 

  4. C.W. Ahn, H. Lee, S.H. Kang, W. Kim, M.S. Choi, J.S. Lee, H.W. Kim, B.M. Jin, J. Electroceram. 21, 847 (2008)

    Article  Google Scholar 

  5. K. Ruan, X. Chen, T. Lian, G. Wu, D. Bao, J. Appl. Phys. 103, 074101 (2008)

    Article  Google Scholar 

  6. K. Ruan, X. Chen, T. Lian, G. Wu, D. Bao, J. Appl. Phys. 103, 086104 (2008)

    Article  Google Scholar 

  7. A.Q. Jiang, G.H. Li, L.D. Zhang, J. Appl. Phys. 83, 4878 (1998)

    Article  Google Scholar 

  8. S. Kumar, K.B.R. Varma, J. Phys. D Appl. Phys. 42, 075405 (2009)

    Article  Google Scholar 

  9. J. Zhu, X.B. Chan, W.P. Lu, X.Y. Mao, R. Hui, Appl. Phys. Lett. 83, 1818 (2003)

    Article  Google Scholar 

  10. A.Z. Simoes, C.S. Riccardi, L.S. Cavalcante, E. Longo, J.A. Varela, B. Mizaikoff, D.W. Hess, J. Appl. Phys. 101, 084112 (2007)

    Article  Google Scholar 

  11. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999)

    Article  Google Scholar 

  12. C. Elissalde, J. Ravez, J. Mater. Chem. 11, 1957 (2001)

    Article  Google Scholar 

  13. H.S. Shulman, D. Damjanovic, N. Setter, J. Am. Ceram. Soc. 83, 528 (2000)

    Article  Google Scholar 

  14. Y.Y. Yao, C.H. Song, P. Bao, D. Su, X.M. Lu, J.S. Zhu, Y.N. Wang, J. Appl. Phys. 95, 3126 (2004)

    Article  Google Scholar 

  15. J.S. Kim, W. Kim, J. Electroceram. 16, 373 (2006)

    Article  Google Scholar 

  16. Y. Wu, G. Cao, Appl. Phys. Lett. 75, 2650 (1999)

    Article  Google Scholar 

  17. C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Article  Google Scholar 

  18. Z. Zhu, K. Jiang, G.J. Davies, G. Li, Q. Yin, S. Sheng, Smar. Mater. Struct. 15, 1249 (2006)

    Article  Google Scholar 

  19. A.Q. Jiang, Z.X. Hu, L.D. Zhang, Appl. Phys. Lett. 74, 114 (1999)

    Article  Google Scholar 

  20. J.H. Ambrus, C.T. Moyniham, P.B. Macedo, J. Phys. Chem. 76, 3287 (1972)

    Article  Google Scholar 

  21. R.D. Shannon, Acta Crystallogr. A A32, 751 (1976)

    Article  Google Scholar 

  22. Z.Z. Lazarevic, N.Z. Romcevic, J.D. Bobic, M.J. Romcevic, Z. Dohcevic-Mitrovic, B.D. Stojanovic, J. Alloys Compd. 486, 848 (2009)

    Article  Google Scholar 

  23. X. Chou, J. Zhai, H. Jiang, X. Yao, J. Appl. Phys. 102, 084106 (2007)

    Article  Google Scholar 

  24. Y. Kan, X. Jin, G. Zhang, P. Wang, Y.B. Cheng, D. Yan, J. Mater. Chem. 14, 3566 (2004)

    Article  Google Scholar 

  25. V.B. Santos, J.C. M’Peko, M. Mir, V.R. Mastelaro, A.C. Hernandes, J. Eur. Ceram. Soc. 29, 751 (2009)

    Article  Google Scholar 

  26. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002)

    Article  Google Scholar 

  27. J.C. Maxwell, Electricity and Magnetism (Oxford University Press, Oxford, 1873), vol. 1, sec. 328

  28. H. Neumann, G. Arlt, Ferroelectrics 69, 179 (1986)

    Article  Google Scholar 

  29. Zhi. Yua, Chen. Ang, J. Appl. Phys. 91, 794 (2002)

    Article  Google Scholar 

  30. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74, 125 (1976)

    Article  Google Scholar 

  31. A.H. Elsayed, A.M. Haffz, Egypt. J. Solids 28, 53 (2005)

    Google Scholar 

  32. M. Prabu, S. Selvasekarapandian, Mat. Chem. Phys. 134, 366 (2012)

    Article  Google Scholar 

  33. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812 (2003)

    Article  Google Scholar 

  34. S.K. Bera, S.K. Barik, R.N.P. Choudhary, P.K. Bajpai, Bull. Mater. Sci. 35, 47 (2012)

    Article  Google Scholar 

  35. Lily, K. Kumari, K. Prasad, R.N.P. Choudhary, J. Alloys Compd. 453, 325 (2008)

    Article  Google Scholar 

  36. P.S. Anantha, K. Hariharan, Mater. Sci. Eng. B 121, 12 (2005)

    Article  Google Scholar 

  37. W. Li, K. Chen, Y. Yao, J. Zhu, Y. Wang, Appl. Phys. Lett. 85, 4717 (2004)

    Article  Google Scholar 

  38. S.K. Rout, A. Hussian, J.S. Lee, I.W. Kim, S.I. Woo, J. Alloys Compd. 477, 706 (2009)

    Article  Google Scholar 

  39. R. Moos, K.H. Hardtl, J. Appl. Phys. 80, 393 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Bhardwaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, S., Paul, J., Chand, S. et al. Oxygen vacancy induced dielectric relaxation studies in Bi4−xLaxTi3O12 (x = 0.0, 0.3, 0.7, 1.0) ceramics. J Mater Sci: Mater Electron 25, 4568–4576 (2014). https://doi.org/10.1007/s10854-014-2205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2205-7

Keywords

Navigation