Skip to main content
Log in

Carrier induced ferromagnetism in Yb doped SrTiO3 perovskite system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferromagnetism induced Yb (1, 3 %) doped SrTiO3 compounds were synthesized by glycol assisted citrate sol–gel method. The cubic perovskite structure of the prepared compounds was confirmed by powder X-ray diffraction and laser Raman spectra analysis. Surface morphology of the prepared compounds was analyzed by scanning electron microscopy and transmission electron microscopy. Oxidation states with functionalization of elements were identified with X-ray photoelectron spectroscopy. The interesting optical behavior was observed for Yb doped samples, which shows violet–blue emissions in photoluminescence spectra due to interface trapping and Sr defects. The magnetization studies demonstrate that pure SrTiO3 exhibits characteristic diamagnetism at room temperature and the addition of Yb3+ in Sr2+ site drives the carrier induced exchange interactions which results the ferromagnetic behavior. Hence the occurrence of tunable diamagnetic to ferromagnetic and reversal ferromagnetic transition with respect to the concentration of dopant at room temperature was identified. From the present investigation, it was observed that the doping of Yb in SrTiO3 results with new kind of multifunctional material for fabrication of magneto-optical and electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.G. Bahoosh, J.M. Wesselinowa, J. Appl. Phys. 112, 053907 (2012)

    Article  Google Scholar 

  2. S. Ramakanth, K.C. James Raju, Solid State Commun. 187, 59–63 (2014)

    Article  Google Scholar 

  3. Y.J. Chang, A. Bostwick, Y.S. Kim, K. Horn, E. Rotenberg, Phys. Rev. B 81, 235109 (2010)

    Article  Google Scholar 

  4. A. Rubano, F. Ciccullo, D. Paparo, F. Miletto Granozio, U. Scotti di Uccio, L. Marrucci, J. Lumin. 129, 1923–1926 (2009)

    Article  Google Scholar 

  5. A. Rubano, F. Ciccullo, D. Paparo, F. MilettoGranozio, U. Scotti di Uccio, L. Marrucci, J. Appl. Phys. 106, 103515 (2009)

    Article  Google Scholar 

  6. M. Valant, T. Kolodiazhnyi, I. Arc, F. Aguesse, A.K. Axelsson, N.M. Alford, Adv. Funct. Mater. 22, 2114–2122 (2012)

    Article  Google Scholar 

  7. V.M. Longo, M.D.G.S. Costa, A.Z. Simoes, I.L.V. Rosa, C.O.P. Santos, J. Andres, E. Longo, J.A. Varela, Phys. Chem. Chem. Phys. 12, 7566–7579 (2010)

    Article  Google Scholar 

  8. P. Moetakef, J.R. Williams, D.G. Ouellette, A.P. Kajdos, D. Goldhaber ordon, S.J. Allen, S. Stemmer, Phys. Rev. X 2, 021014 (2012)

    Google Scholar 

  9. I.R. Shein, A.L. Ivanovskii, Phys. Lett. A 371, 155–159 (2009)

  10. Y. Zhang, J. Hu, E. Cao, L. Sun, H. Qin, J. Magn. Magn. Mater. 324, 1770–1775 (2012)

    Article  Google Scholar 

  11. C.M. Liu, X. Xiang, X.T. Zu, Chin. J. Phys. 47, 6 (2009)

    Google Scholar 

  12. C.B. Azzoni, M.C. Mozzati, A. Paleari, V.B.M. Massarotti, D. Capsoni, Solid State Commun. 114, 617–622 (2000)

    Article  Google Scholar 

  13. E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, R. Blinc, J. Appl. Phys. 109(094105), 1–6 (2011)

    Google Scholar 

  14. J.A. Dawson, X. Li, C.L. Freeman, J.H. Harding, D.C. Sinclai, J. Mater. Chem. C 1, 1574 (2013)

  15. R. Fujiwara, H. Sano, M. Shimizu, M. Kuwabara, J. Lumin. 129, 231–237 (2009)

    Article  Google Scholar 

  16. M.C. Pujol, M.A. Bursukova, F. Guell, X. Mateos, R. Sole, J. Gavalda, M. Aguilo, J. Massons, F. Diaz, Phys. Rev. B. 651, 65121 (2002)

    Google Scholar 

  17. F. La Mattina, J.G. Bednorz, S.F. Alvarado, A. Shengelaya, K.A. Muller, H. Keller, Phys. Rev. B 80, 075122 (2009)

    Article  Google Scholar 

  18. J. Inaba, T. Katsufuji, Phys. Rev. B 72, 052408 (2005)

    Article  Google Scholar 

  19. K.S. Aneesh Kumar, R.N. Bhowmik, Mater. Chem. Phys. xxx, 1–11 (2014)

    Google Scholar 

  20. V.V. Lemanov, Phys. Solid State 39, 2 (1997)

    Google Scholar 

  21. X.W. Wu, D. Wu, X.J. Liu, Solid State Commun. 145, 255–258 (2008)

    Article  Google Scholar 

  22. A.E. Souza, G.T.A. Santos, B.C. Barra, W.D. Macedo Jr, S.R. Teixeira, C.M. Santos, A.M.O.R. Senos, L. Amaral, E. Longo, Cryst. Growth Des. 12, 5671–5679 (2012)

    Article  Google Scholar 

  23. W. Nilson, J. Skinner, J. Chem. Phys. 48, 2240 (1968)

  24. D.A. Tenne, I.E. Gonenli, A. Soukiassian, D.G. Scholm, S.M. Nakhmanson, K.M. Rabe, X.X. Xi, Phys. Rev. B 76, 024303 (2007)

    Article  Google Scholar 

  25. S. Yoon, A.E. Maegli, L.K. Santhosh, K.M.A. Shkabko, S. Riegg, T. Grobmann, S.G. Ebbinghaus, S. Pokrant, A. Weidenkaff, J. Solid State Chem. 206, 226–232 (2013)

    Article  Google Scholar 

  26. D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144 (1972)

    Article  Google Scholar 

  27. K.V. Banthem, C. Elsasser, R.H. French, J. Appl. Phys. 90, 6156–6164 (2001)

    Article  Google Scholar 

  28. M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J Alloy. Compd. 579, 473–484 (2013)

    Article  Google Scholar 

  29. M. Cardona, Phys. Rev. 140, 2A (1965)

    Google Scholar 

  30. E. Orhan, F.M. Pontes, C.D. Pinheiro, T.M. Boschi, J. Andre, E.R. Leite, P.S. Pizani, A. Beltra, J. Solid State Chem. 177, 3879–3885 (2004)

    Article  Google Scholar 

  31. K.M. Choi, H.S. Kil, Y.S. Lee, D.Y. Lim, S.B. Cho, B.W. Lee, J. Lumin. 131, 894–899 (2011)

    Article  Google Scholar 

  32. S.K.S. Patel, S. Kurian, N.S. Gajbhiye, AIP Advances 2, 012107 (2012)

    Article  Google Scholar 

  33. J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Dorneles, Phys. Rev. B 72, 024450 (2005)

    Article  Google Scholar 

  34. Y. Matsumoto, M. Murakami, Tomojishono, T. Hasegawa, T. Fukumra, M. Kawasaki, P. Ahmet, Toyohirochikyow, S.Y. Koshihara, H. Koinuma, Science 291, 854–856 (2001)

    Article  Google Scholar 

  35. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 72, 161306R (2006)

    Article  Google Scholar 

  36. D.A. Crandles, B.D. Roches, F.S. Razavi, J. Appl. Phys. 108, 053908 (2010)

    Article  Google Scholar 

  37. N. F. Mott, Metal-Insulator Transitions, 2nd edn. (Taylor and Francis, London, 1990), p. 96

  38. S. Middey, C.M. Sugata, Ray. Appl. Phys. Lett. 101, 042406 (2012)

    Article  Google Scholar 

  39. R.V.K. Mangalam, N. Ray, V. Waghmare, A. Umesh, C.N. Sundaresan, R. Rao, Solid State Commun. 149, 1–5 (2009)

    Article  Google Scholar 

  40. N. Apostolova, A.T. Apostolov, S.G. Bahoosh, J.M. Wesselinowa, J. Appl. Phys. 113, 203904 (2013)

    Article  Google Scholar 

  41. Y.B. Bazaliy, L.T. Tsymbal, G.N. Kakazei, V.I. Kamenev, P.E. Wigen, Phys. Rev. B 72, 174403 (2005)

    Article  Google Scholar 

  42. X. Xu, C. Cao, Z. Chen, J. Magn. Magn. Mater. 323, 1886–1889 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muralidharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muralidharan, M., Anbarasu, V., Elaya Perumal, A. et al. Carrier induced ferromagnetism in Yb doped SrTiO3 perovskite system. J Mater Sci: Mater Electron 25, 4078–4087 (2014). https://doi.org/10.1007/s10854-014-2132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2132-7

Keywords

Navigation