Skip to main content
Log in

Improving the characteristics of CdS and CIAS films and the performances of CIAS solar cells by electrodeposition Cu–Se/CIAS binary structure precursors on FTO substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu-poor electrodeposited CuIn1−xAlxSe2 (CIAS) precursor films were prepared to investigate the alteration in surface morphology of post-annealed CIAS films through post-annealing temperature adjustment. Scanning electron microscopy (SEM) and atomic force microscope (AFM) analyses demonstrated that surface morphology and root–mean–square (RMS) roughness of post-annealed CIAS films exhibited uneven and rough triangular structures. The crystal size of post-annealed CIAS films can be increased by increasing post-annealing temperature. The precursor film structure was modified by substituting Cu–Se/CIAS binary structure with CIAS single structure to proceed with the investigation. The apparent variation in surface morphology of post-annealed CIAS films changed from rough triangular structures to smooth round structures, and the RMS roughness of post-annealed CIAS films was reduced to <100 nm. The reduction was attributed to the formation of Cu–Se liquid phases during the post-annealing process, which enhanced elemental migration, recombination, and promotion of large grains and smooth surface formation. X-ray diffraction patterns showed three preferred growth orientations along the (112), (204/220), and (116/312) planes with chalcopyrite structures for all species. In addition, the characteristics of surface morphology, RMS roughness, and current measurement of subsequently deposited cadmium sulfide (CdS) film were studied and examined via SEM and AFM analyses. The surface morphology of CdS films deposited on binary structure post-annealed CIAS films exhibited smoothness, compactness, small RMS roughness, and large crystals with round and film-like structure. The AFM current images indicated that the distribution of leakage current paths was greatly diminished by changing the precursor film structure from CIAS single structure to Cu–Se/CIAS binary structure. The dark current–voltage characteristics of the CdS/CIAS heterojunctions showed that the reverse dark current density was decreased by approximately one order of magnitude from 4.02 × 10−4 (single structure) to 4.26 × 10−5 A/cm2 (binary structure). Furthermore, the conversion efficiency of CIAS solar cells was enhanced from 0.52 (single structure) to 1.44 % (binary structure) with increase in Voc and Jsc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.D. Paulson, M.W. Haimbodi, S. Marsillac, R.W. Birkmire, W.N. Shafarmana, J. Appl. Phys. 91, 10153–10156 (2002)

    Article  Google Scholar 

  2. J. Lo´pez-Garc´ıa, C. Maffiotte, C. Guille´n, Sol. Energy Mater. Sol. Cells 94, 1263–1269 (2010)

    Article  Google Scholar 

  3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovolt. Res. Appl. 19, 894–897 (2011)

    Article  Google Scholar 

  4. T. Hayashi, T. Minemoto, G. Zoppi, I. Forbes, K. Tanaka, S. Yamada, T. Araki, H. Takakura, Sol. Energy Mater. Sol. Cells 93, 922–925 (2009)

    Article  Google Scholar 

  5. M. Gloeckler, J.R. Sites, Thin Solid Films 480–481, 241–245 (2005)

    Article  Google Scholar 

  6. M. Sugiyama, A. Umezawa, T. Yasuniwa, A. Miyama, H. Nakanishi, S.F. Chichibu, Thin Solid Films 517, 2175–2177 (2009)

    Article  Google Scholar 

  7. S. Marsillac, P.D. Paulson, M.W. Haimbodi, R.W. Birkmire, W.N. Shafarmanb, Appl. Phys. Lett. 81, 1350–1352 (2002)

    Article  Google Scholar 

  8. Y. Bharath Kumar Reddy, V. Sundara Raja, Sol. Energy Mater. Sol. Cells 90, 1656–1665 (2006)

    Article  Google Scholar 

  9. K. Srinivas, A.J.N. Kumar, A.G.H. Chandra, S. Uthanna, J Mater Sci Mater Electron 17, 1035–1039 (2006)

    Google Scholar 

  10. G.H. Chandra, C. Udayakumar, S. Rajagopalan, A.K. Balamurugan, S. Uthanna, Phys. Status Solidi A 4, 704–710 (2009)

    Article  Google Scholar 

  11. D.C. Pernga, J.W. Chena, C.J. Wua, Sol. Energy Mater. Sol. Cells 95, 257–260 (2011)

    Article  Google Scholar 

  12. J. Olejníček, C.A. Kamler, S.A. Darveau, C.L. Exstrom, L.E. Slaymaker, A.R. Vandeventer, N.J. Ianno, R.J. Soukup, Thin Solid Films 519, 5329–5334 (2011)

    Article  Google Scholar 

  13. R.P. Changa, D.C. Perng, Thin Solid Films 529, 238–241 (2013)

    Article  Google Scholar 

  14. D. Dwyer, I. Repins, H. Efstathiadis, P. Haldar, Sol. Energy Mater. Sol. Cells 94, 598–605 (2010)

    Article  Google Scholar 

  15. A. Umezawa, T. Yasuniwa, A. Miyama, H. Nakanishi, M. Sugiyama, S.F. Chichibu, Phys. Status Solidi C 5, 1016–1018 (2009)

    Article  Google Scholar 

  16. J. López-García, C. Guillén, Thin Solid Films 517, 2240–2243 (2009)

    Article  Google Scholar 

  17. K.G. Deepa, N. Lakshmi Shruthi, M. Anantha Sunil, J. Nagaraju, Thin Solid Films 551, 1–7 (2014)

    Article  Google Scholar 

  18. D. Prasher, P. Rajaram, Thin Solid Films 519, 6252–6257 (2011)

    Article  Google Scholar 

  19. Y. Oda, M. Matsubayashi, T. Minemoto, H. Takakura, J. Cryst. Growth 311, 738–741 (2009)

    Article  Google Scholar 

  20. F. Kang, J. Ao, G. Sun, Q. He, Y. Sun, Curr. Appl. Phys. 10, 886–888 (2010)

    Article  Google Scholar 

  21. M. Benaicha, N. Benouattas, C. Benazzouz, L. Ouahab, Sol. Energy Mater. Sol. Cells 93, 262–266 (2009)

    Article  Google Scholar 

  22. D. Xia, J. Li, M. Xu, X. Zhao, J. Non-Cryst. Solids 354, 1447–1450 (2008)

    Article  Google Scholar 

  23. K. Tsutsumi, T. Minemoto, K. Uzawa, K. Yaginuma, F. Makuta, H. Takakura, Jpn. J. Appl. Phys. 50, 121201–121204 (2011)

    Article  Google Scholar 

  24. J.R. Tuttle, D.S. Albin, R. Noufi, Sol. Cells 30, 21–38 (1991)

    Article  Google Scholar 

  25. M. Kemell, M. Ritala, H. Saloniemi, M. Leskela, T. Sajavarra, E. Rauhalh, J. Electrochem. Soc. 147, 1080–1087 (2000)

    Article  Google Scholar 

  26. A.M. Hermann, M. Mansour, V. Badri, B. Pinkhasov, C. Gonzales, F. Fickett, M.E. Calixto, P.J. Sebastian, C.H. Marshall, T.J. Gillespie, Thin Solid Films 361–362, 74–78 (2002)

    Google Scholar 

  27. R.N. Bhattacharya, J. Electrochem. Soc. 15, D406–D410 (2010)

    Article  Google Scholar 

  28. V.S. Saji, I.H. Choi, C.W. Lee, Sol. Energy 85, 2666–2678 (2011)

    Article  Google Scholar 

  29. H.C. Huang, C.S. Lin, F.J. Chen, W.C. Li, Electrochim. Acta 97, 244–252 (2013)

    Article  Google Scholar 

  30. V.N. Dhanwate, N.B. Chaure, Appl. Nanosci. 3, 1–5 (2013)

    Article  Google Scholar 

  31. Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li, Y. Liu, Electrochim. Acta 54, 3004–3010 (2009)

    Article  Google Scholar 

  32. T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, M. Konagai, Phys. Stat. Sol. (a) 203, 2593–2597 (2006)

    Article  Google Scholar 

  33. S. Ishizuka, L.M. Mansfield, C. Dehart, M. Scoot, B. To, M.R. Young, B. Egass, R. Noufi, IEEE J. Photovolt. 3, 2156–3381 (2013)

    Article  Google Scholar 

  34. X.L. Zhu, Y.M. Wang, Z. Zhou, A.M. Li, L. Zhang, F.Q. Huang, Sol. Energy Mater. Sol. Cells 113, 140–143 (2013)

    Article  Google Scholar 

  35. T.P. Hsieh, C.C. Chuang, C.S. Wu, J.C. Chang, J.W. Guo, W.C. Chen, Solid-State Electron. 56, 175–178 (2011)

    Article  Google Scholar 

  36. B. Dimmler, H. Dittrich, H. W. Schock, Structure and morphology of evaporated bilayer and selenized CuInSe2 films In: Proceedings of the 20th IEEE Photovoltaic specialists conference. New York (1988) 1426–1430

  37. A.N. Molin, A.I. Dikusar, G.A. Kiosse, P.A. Petrenko, A.I. Sokolovsky, YuG Saltanovsky, Thin Solid Films 237, 66–71 (1994)

    Article  Google Scholar 

  38. B. Kavitha, M. Dhanam, Mater. Sci. Eng. B 140, 59–63 (2007)

    Article  Google Scholar 

  39. K.C. Huang, C.L. Liu, P.K. Hung, M.P. Houng, J. Electrochem. Soc. 160, D125–D131 (2013)

    Article  Google Scholar 

  40. J.F. Guillemoles, Thin Solid Films 361–62, 338–345 (2000)

    Article  Google Scholar 

  41. D. Cahen, J. Phys. Chem. Solids 53, 991–1005 (1992)

    Google Scholar 

  42. W.K. Kim, S. Kim, E.A. Payzant, S.A. Speakman, S. Yoon, R.M. Kaczynski, R.D. Acher, T.J. Anderson, O.D. Crisalle, S.S. Li, V. Craciun, J. Phys. Chem. Solids 66, 1915–1919 (2005)

    Google Scholar 

  43. W.K. Kim, E.A. Payzant, S. Kim, S.A. Speakman, O.D. Crisalle, T.J. Anderson, J. Cryst. Growth 310, 2987–2994 (2008)

    Article  Google Scholar 

  44. F. Smaili, Eur. Phys. J. Appl. Phys. 54, 10304–10308 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council (NSC) of Taiwan under Contract Number NSC-97-2221-E-006-239-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mau-Phon Houng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, KC., Liu, CL., Hung, PK. et al. Improving the characteristics of CdS and CIAS films and the performances of CIAS solar cells by electrodeposition Cu–Se/CIAS binary structure precursors on FTO substrate. J Mater Sci: Mater Electron 25, 3907–3919 (2014). https://doi.org/10.1007/s10854-014-2106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2106-9

Keywords

Navigation