Skip to main content
Log in

Low-temperature sintering and electrical properties of Co-doped ZnO varistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO–Bi2O3–B2O3-based varistors doped with each kind of cobalt oxides were prepared by conventional ceramic processing. The effects of CoO, Co2O3 and Co3O4 on the microstructure and the electrical characteristics of varistor samples sintered at 880 °C were investigated separately. Analysis of microstructure indicated the cobalt cations were distributed both in grain regions and grain boundary regions and no crystalline phases containing cobalt were detected in XRD patterns for the samples with various cobalt oxides. All these cobalt oxides could effectively enhance the varistor performance by effectively increasing the nonlinear coefficient and lowing the leakage current, while the breakdown voltage fields increased slightly. Capacitance–voltage characteristics showed the potential barriers of varistor samples increased with the addition of each cobalt oxide. It was found that the addition of same amount of cobalt cations in various cobalt oxides had a different effect on the varistor samples. Best electrical properties were obtained for the varistor sample containing Co3O4, in which the nonlinearity coefficient is 28.5, the leakage current density is 3.4 μA and the breakdown voltage field is as low as 260 V/mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Matsuoka, Jpn. J. Appl. Phys. 10, 736 (1971)

    Article  Google Scholar 

  2. C. Leach, Acta Mater. 53, 237 (2005)

    Article  Google Scholar 

  3. T.K. Gupta, J. Am. Cream. Soc. 73, 1817 (1990)

    Article  Google Scholar 

  4. M.A. Ramírez, P.R. Bueno, W.C. Ribeiro, D.A. Bonett, J.M. Villa, M.A. Márquez, J.A. Varela, C.R. Rojo, J. Mater. Sci. 40, 5591 (2005)

    Article  Google Scholar 

  5. L.M. Levinson, H.R. Philipp, J. Appl. Phys. 47, 1117 (1976)

    Article  Google Scholar 

  6. G.D. Mahan, L.M. Levison, H.R. Philipp, J. Appl. Phys. 50, 2799 (1979)

    Article  Google Scholar 

  7. T.K. Gupta, W.G. Carlson, J. Mater. Sci. 20, 3487 (1985)

    Article  Google Scholar 

  8. S.A. Pinaro, E.C. Pereira, L.O.S. Bulhoes, E. Longo, J.A. Varela, J. Mater. Sci. 30, 133 (1995)

    Article  Google Scholar 

  9. M.A. Ramírez, R. Tararam, A.Z. Simões, A. Ries, E. Longo, J.A. Varela, J. Am. Ceram. Soc. 96, 1801 (2013)

    Article  Google Scholar 

  10. M.A. Ramírez, W. Bassi, P.R. Bueno, E. Longo, J.A. Varela, J. Phys. D Appl. Phys. 41, 122002 (2008)

    Article  Google Scholar 

  11. M.A. Ramírez, A.Z. Simões, P.R. Bueno, M.A. Márquez, M.O. Orlandi, J.A. Varela, J. Mater. Sci. 41, 6221 (2006)

    Article  Google Scholar 

  12. S. Ezhilvalavan, T.R.N. Kutty, J. Mater. Sci.: Mater. Electron. 7, 137 (1996)

    Google Scholar 

  13. M.A. Ramírez, W. Bassi, R. Parra, P.R. Bueno, E. Longo, J.A. Varela, J. Am. Ceram. Soc. 91, 2402 (2008)

    Article  Google Scholar 

  14. P.Q. Mantas, J.L. Baptista, J. Eur. Ceram. Soc. 15, 605 (1995)

    Article  Google Scholar 

  15. M. Elfwing, R. Osterlund, E. Olsson, Am. Cream. Soc. 83, 2311 (2000)

    Article  Google Scholar 

  16. M.S. Castro, C.M. Aldao, J.M.P. López, Mater. Res. Bull. 29, 1287 (1994)

    Article  Google Scholar 

  17. A. Miralles, A. Cornet, A. Herms, J.R. Morante, Mater. Sci. Eng. A109, 201 (1989)

    Article  Google Scholar 

  18. V. Gunay, O. Gelecek-Sulan, O.T. Ozkan, Ceram. Int. 30, 105 (2004)

    Article  Google Scholar 

  19. Z. Zivic, Informacije. Midem. 24, 161 (1994)

    Google Scholar 

  20. W.S. Lee, W.T. Chen, Y.C. Lee, T. Yang, C.Y. Su, C.L. Hu, Ceram. Int. 33, 1001 (2007)

    Article  Google Scholar 

  21. A. Sedky, T.K. El-Brolossy, S.B. Mohamed, J. Phys. Chem. Solids 73, 505 (2012)

    Google Scholar 

  22. C. Leach, K. Vernon-Parry, J. Mater. Sci. 41, 3815 (2006)

    Article  Google Scholar 

  23. J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)

    Article  Google Scholar 

  24. M. Kazuo, T. Kouichi, N. Ikuo, J. Appl. Phys. 50, 4475 (1979)

    Article  Google Scholar 

  25. P. Durán, F. Capel, J. Tartaj, C. Moure, J. Eur. Cream. Soc. 22, 67 (2002)

    Article  Google Scholar 

  26. C.-W. Nahm, J. Mater. Sci.: Mater. Electron. 24, 27 (2013)

    Google Scholar 

  27. J.N. Cai, Y.H. Lin, M. Li, C.W. Nan, J.L. He, F.L. Yuan, J. Am. Ceram. Soc. 90, 291 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (No. 2013AA030801), National Natural Science Foundation of China (No. 51372110), the Natural Science Foundation of Shandong Province of China (No. ZR2012EMM004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Xu, Z., Chu, R. et al. Low-temperature sintering and electrical properties of Co-doped ZnO varistors. J Mater Sci: Mater Electron 25, 3878–3884 (2014). https://doi.org/10.1007/s10854-014-2102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2102-0

Keywords

Navigation