Skip to main content
Log in

Effect of TiO2 addition concentration on the wettability and intermetallic compounds growth of Sn3.0Ag0.5Cu–xTiO2 nano-composite solders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, addition of TiO2 nanoparticles with a concentration in the range from 0 to 0.75 wt% into eutectic Sn3.0Ag0.5Cu solders were prepared. The effect of TiO2 addition concentration on intermetallic compounds (IMC) growth in solder matrix, wettability of the composite solder, and interfacial IMC growth at composite solder/Cu interface were studied respectively. The microstructure images show that both IMC growth in solder matrix and interfacial IMC growth at solder/Cu interface were suppressed when TiO2 nanoparticles are added into the Sn3.0Ag0.5Cu solder system, meanwhile, wettability test results show wetting time reduction and wetting force enlargement with TiO2 nanoparticles addition concentration increasing. These results reveal that the added TiO2 nanoparticles in solders work as reinforce agent and enhance solder performance by reducing IMC dimension and improving wettability. However, TiO2 addition concentration is critical to the improvement extent. The matrix IMC size and interfacial IMC thickness were reduced significantly with the TiO2 addition concentration increasing in small addition range (0, 0.1 and 0.25 wt%). The most significant suppression appears when TiO2 concentration is about 0.25 wt%. Beyond this concentration, the matrix IMC size and interfacial IMC thickness increase, but still smaller than non-added Sn3.0Ag0.5Cu solder. Sn–Ag–Cu (SAC)–0.25TiO2 exhibits most obviously refined solder microstructure. The variation of wetting time and wetting force with the change of TiO2 concentration are similar. Addition of 0.25 wt% TiO2 shortens wetting time and strengthens wetting force most effectively. SAC–0.25TiO2 exhibit best wettability performance as well. The IMC variation consistent with wettability variation revels there is an optimal TiO2 addition concentration which is about 0.25 wt%. Both insufficient adding and excessive adding will weaken the TiO2 nanoparticle reinforcement extent. Based on the theory of adsorption and agglomeration, a mechanism of the TiO2 nanoparticle concentration effect and the optimal addition point was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R Rep. 27, 95–141 (2000)

    Article  Google Scholar 

  2. K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability (Springer, New York, 2007)

    Google Scholar 

  3. N. Chawla, Int. Mater. Rev. 54, 368–384 (2009)

    Article  Google Scholar 

  4. B.Y. Wu, Y.C. Chan, A. Middendorf, X. Gu, H.W. Zhong, J. Environ. Sci. 20, 1403–1408 (2008)

    Article  Google Scholar 

  5. K. Zeng, K.N. Tu, Mater. Sci. Eng. R Rep. 38, 55–105 (2002)

    Article  Google Scholar 

  6. C.Y. Lin, U.S. Mohanty, J.H. Chou, J. Alloy Compd. 501, 204–210 (2010)

    Article  Google Scholar 

  7. L.R. Garcia, W.R. Osorio, L.C. Peixoto, A. Garcia, J. Electron. Mater. 38, 2405–2414 (2009)

    Article  Google Scholar 

  8. G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, J. Mater. Sci. Mater. Electron. 21, 421–440 (2010)

    Google Scholar 

  9. F.X. Che, J.H.L. Pang, J. Alloy. Compd. 541, 6–13 (2012)

    Article  Google Scholar 

  10. L.C. Tsao, Mater. Sci. Eng. A 529, 41–48 (2011)

    Article  Google Scholar 

  11. T. Fouzder, I. Shafiq, Y.C. Chan, A. Sharif, W.K.C. Yung, J. Alloy Compd. 509, 1885–1892 (2011)

    Article  Google Scholar 

  12. K. Kanlayasiri, M. Mongkolwongrojn, T. Ariga, J. Alloy Compd. 485, 225–230 (2009)

    Article  Google Scholar 

  13. W. Xiao, Y. Shi, G. Xu et al., J. Alloy Compd. 472, 198–202 (2009)

    Article  Google Scholar 

  14. Y.C. Chan, D. Yang, Prog. Mater. Sci. 55, 428–475 (2010)

    Article  Google Scholar 

  15. A.S.M.A. Haseeb, T.S. Leng, Intermetallics 19, 707–712 (2011)

    Article  Google Scholar 

  16. S.L. Tay, A.S.M.A. Haseeb, J. Mohd, Rafie. Solder. Surf. Mater. Technol. 23, 10–14 (2011)

    Article  Google Scholar 

  17. A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 2306–2313 (2011)

    Article  Google Scholar 

  18. J.X. Wang, S.B. Xue, Z.J. Han et al., J. Alloy Compd. 467, 219–226 (2009)

    Article  Google Scholar 

  19. L. Zhang, J.G. Han, C.W. He, Y.H. Guo, J. Mater. Sci. Mater. Electron. 23, 1950–1956 (2012)

    Google Scholar 

  20. X.D. Liu, Y.D. Han, H.Y. Jing, J. Wei, L.Y. Xu, Mater. Sci. Eng. A 562, 25–32 (2013)

    Article  Google Scholar 

  21. A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 975–984 (2011)

    Article  Google Scholar 

  22. S.Y. Chang, C.C. Jain, T.H. Chuang, L.P. Feng, L.C. Tsao, Mater. Des. 32, 4720–4727 (2011)

    Article  Google Scholar 

  23. J.C. Leong, L.C. Tsao, C.J. Fang, C.P. Chu, J. Mater. Sci. Mater. Electron. 22, 1443–1449 (2011)

    Google Scholar 

  24. L.C. Tsao, M.W. Wu, S.Y. Chang, J. Mater. Sci. Mater. Electron. 23, 681–687 (2012)

    Google Scholar 

  25. Y. Tang, G.Y. Li, Y.C. Pan, J. Alloy Compd. 554, 195–203 (2013)

    Article  Google Scholar 

  26. L.C. Tsao, C.P. Chu, S.F. Peng, Microelectron. Eng. 88, 2964–2969 (2011)

    Article  Google Scholar 

  27. L.C. Tsao, C.H. Huang, C.H. Chung, R.S. Chen, Mater. Sci. Eng. A 545, 194–200 (2012)

    Article  Google Scholar 

  28. W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach (Wiley, New York, 2004)

    Google Scholar 

  29. A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, W.K.C. Yung, J. Alloy Compd. 489, 678–684 (2010)

    Article  Google Scholar 

  30. Y. Tang, G.Y. Li, Y.C. Pan, Mater. Des. 55, 574–582 (2014)

    Article  Google Scholar 

  31. J. Shen, Y.C. Chan, Microelectron. Reliab. 49, 223–234 (2009)

    Article  Google Scholar 

  32. L.C. Tsao, J. Alloy Compd. 509, 8441–8448 (2011)

    Article  Google Scholar 

  33. D.Q. Yu, L. Wang, C.M.L. Wu, C.M.T. Law, J. Alloy Compd. 389, 153–158 (2005)

    Article  Google Scholar 

  34. D.Q. Yu, C.M.L. Wu, C.M.T. Law, L. Wang, J.K.L. Lai, J. Alloy Compd. 392, 192–199 (2005)

    Article  Google Scholar 

  35. X. Liu, M. Huang, Y. Zhao, C.M.L. Wu, L. Wang, J. Alloy Compd. 492, 433–438 (2010)

    Article  Google Scholar 

  36. M. Amagai, Microelectron. Reliab. 48, 1–16 (2008)

    Article  Google Scholar 

  37. K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan, S. Stappert, Phys. Rev. Lett. 91, 106102 (2003)

    Article  Google Scholar 

  38. F. Bødker, S. Mørup, S. Linderoth, Phys. Rev. Lett. 72, 282–285 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support received from National Science and Technology Major Project (2011ZX02607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiuChen Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, X., Liu, Y. et al. Effect of TiO2 addition concentration on the wettability and intermetallic compounds growth of Sn3.0Ag0.5Cu–xTiO2 nano-composite solders. J Mater Sci: Mater Electron 25, 3816–3827 (2014). https://doi.org/10.1007/s10854-014-2094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2094-9

Keywords

Navigation