Skip to main content
Log in

Role of SiC substrate polarity on the growth and properties of bulk AlN single crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two symmetrically nonequivalent silicon carbide (SiC) substrate orientations, (0001) Si-terminated and \((000\overline{1} )\) C-terminated, were used in the physical vapour transport growth of bulk aluminium nitride (AlN) single crystals. The crystals grown on Si-faces always exhibit an Al-polar growth surface. AlN growth on \((000\overline{1} )\) C-terminated surfaces of the SiC substrates was performed to obtain N-polar growth surfaces. An abrupt interface was observed between the AlN crystal and the C-face substrate which is in contrast to the growth on Si-faces where hexagonally shaped SiC hillocks are formed. The growth on C-faces is usually dominated by multi-site nucleation. Applying similar supersaturation conditions that led to step-flow growth on Si-faces to the C-faces resulted in a spiral growth mode, even on highly off-oriented substrates. The obtained broad X-ray diffraction rocking curves of such samples (full-width at half-maximum ≈380 arcsec) indicate the presence of more misfit dislocations and significant misfit stress. In addition, polarity inversion is observed in C-face grown crystals. Though the structural properties of the crystals grown on C-face are inferior to that of the crystals grown on Si-face, the incorporation of unintentional Si impurity was found to be lower (<2 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The term “growth surface” is used for a (0001)-oriented AlN surface that had been the growing surface at a specific time and is not necessarily an as-grown surface.

References

  1. C. Moe, J. Chen, J.R. Grandusky, M.C. Mendrick, R. Randive, L.E. Rodak, A.V. Sampath, M. Wraback, L. Schowalter, in paper JM3O.5, The Conference on Lasers and Electro-Optics (CLEO), Science and Innovations, OSA Technical Digest (online), San Jose, California, United States, 9–14 June 2013; Optical Society of America, Washington, 2013

  2. T. Kinoshita, K. Hironaka, T. Obata, T. Nagashima, R. Dalmau, R. Schlesser, B. Moody, J. Xie, S. Inoue, Y. Kumagai, A. Koukitu, Z. Sitar, Appl. Phys. Express 5, 122101 (2012)

    Article  Google Scholar 

  3. Z.G. Herro, D. Zhuang, R. Schlesser, Z. Sitar, J. Cryst. Growth 312, 2519 (2010)

    Article  Google Scholar 

  4. P. Lu, J.H. Edgar, C. Cao, K. Hohn, R. Dalmau, R. Schlesser, Z. Sitar, J. Cryst. Growth 310, 2464 (2008)

    Article  Google Scholar 

  5. M. Beshkova, Z. Zakhariev, J. Birch, A. Kakanakova, R. Yakimova, J. Mater. Sci. Mater. Electron. 14, 767 (2003)

    Google Scholar 

  6. R. Dalmau, R. Schlesser, B.J. Rodriguez, R.J. Nemanich, Z. Sitar, J. Cryst. Growth 281, 68 (2005)

    Article  Google Scholar 

  7. S. Wang, B. Raghothamachar, M. Dudley, A.G. Timmerman, Mater. Res. Soc. Symp. Proc. 892, FF30-06.1 (2006)

  8. I. Nagai, T. Kato, T. Miura, H. Kamata, K. Naoe, K. Sanada, H. Okumura, J. Cryst. Growth 312, 2699 (2010)

    Article  Google Scholar 

  9. B.M. Epelbaum, P. Heimann, M. Bickermann, A. Winnacker, Phys. Status Solidi C 2, 2070 (2005)

    Article  Google Scholar 

  10. M. Bickermann, B.M. Epelbaum, O. Filip, P. Heimann, S. Nagata, A. Winnacker, Phys. Status Solidi C 5, 1502 (2008)

    Article  Google Scholar 

  11. C. Hartmann, M. Albrecht, J. Wollweber, J. Schuppang, U. Juda, C. Guguschev, S. Golka, A. Dittmar, R. Fornari, J. Cryst. Growth 344, 19 (2012)

    Article  Google Scholar 

  12. TYu. Chemekova, O.V. Avdeev, I.S. Barash, E.N. Mokhov, S.S. Nagalyuk, A.D. Roenkov, A.S. Segal, YuN Makarov, M.G. Ramm, G. Davis, G. Huminic, H. Helava, Phys. Status Solidi C 5, 1612 (2008)

    Article  Google Scholar 

  13. Y.N. Makarov, O.V. Avdeev, I.S. Barash, D.S. Bazarevskiy, T.Y. Chemekova, E.N. Mokhov, S.S. Nagalyuk, A.D. Roenkov, A.S. Segal, Y.A. Vodakov, M.G. Ramm, S. Davis, G. Huminic, H. Helava, J. Cryst. Growth 310, 881 (2008)

    Article  Google Scholar 

  14. H. Helava, TYu. Chemekova, O.V. Avdeev, E.N. Mokhov, S.S. Nagalyuk, Y.N. Makarov, M.G. Ramm, Phys. Status Solidi C 7, 2115 (2010)

    Article  Google Scholar 

  15. O. Filip, B.M. Epelbaum, M. Bickermann, P. Heimann, S. Nagata, A. Winnacker, Mater. Sci. Forum 615–617, 983 (2009)

    Article  Google Scholar 

  16. M. Bickermann, O. Filip, B.M. Epelbaum, P. Heimann, A. Winnacker, Phys. Status Solidi C 7, 1746 (2010)

    Article  Google Scholar 

  17. R.R. Sumathi, R.U. Barz, T. Straubinger, P. Gille, J. Cryst. Growth 360, 193 (2012)

    Article  Google Scholar 

  18. R.R. Sumathi, R.U. Barz, A.M. Gigler, T. Straubinger, P. Gille, Phys. Status Solidi A 209, 415 (2012)

    Article  Google Scholar 

  19. Y. Kumagai, Y. Kubota, T. Nagashima, T. Kinoshita, R. Dalmau, R. Schlesser, B. Moody, J. Xie, H. Murakami, A. Koukitu, Z. Sitar, Appl. Phys. Express 5, 055504 (2012)

    Article  Google Scholar 

  20. R. Dalmau, Z. Sitar, in Springer Handbook of Crystal Growth, ed. by G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley (Springer, Berlin, 2010), p. 821

    Chapter  Google Scholar 

  21. Z.G. Herro, D. Zhuang, R. Schlesser, R. Collazo, Z. Sitar, Mater. Res. Soc. Symp. Proc. 892, FF21-01.1 (2006)

  22. M. Stutzmann, O. Ambacher, M. Eickhoff, U. Karrer, A. Kima Pimenta, R. Neuberger, J. Schalwig, R. Dimitrov, P.J. Schuck, R.D. Grober, Phys. Status Solidi B 228, 505 (2001)

    Article  Google Scholar 

  23. R. Dimitrov, V. Tilak, M. Murphy, W. J. Schaff, L. F. Eastman, A. P. Lima, C. Miskysa, O. Ambacher, M. Stutzmann, Mater. Res. Soc. Symp. Proc. 622, T4.6.1 (2000)

  24. R.R. Sumathi, P. Gille, Cryst. Res. Technol. 47, 237 (2012)

    Article  Google Scholar 

  25. R.R. Sumathi, Cryst. Eng. Comm. 15, 2236 (2013)

    Article  Google Scholar 

  26. M. Bickermann, S. Schmidt, B.M. Epelbaum, P. Heimann, S. Nagata, A. Winnacker, J. Cryst. Growth 300, 299 (2007)

    Article  Google Scholar 

  27. D. Zuang, J.H. Edgar, B. Strojek, J. Chaudhuri, Z. Rek, J. Cryst. Growth 262, 89 (2004)

    Article  Google Scholar 

  28. A.S. Segal, S.Y. Karpov, Y.N. Makarov, E.N. Mokhov, A.D. Roenkov, M.G. Ramm, Y.A. Vodakov, J. Cryst. Growth 211, 68 (2000)

    Article  Google Scholar 

  29. R. Dalmau, B. Moody, J. Xie, R. Collazo, Z. Sitar, Phys. Status Solidi A 208, 1545 (2011)

    Article  Google Scholar 

  30. M. Kuball, J.M. Hayes, H.H. Wills, A.D. Prins, N.W.A. van Uden, D.J. Dunstan, Y. Shi, J.H. Edgar, Appl. Phys. Lett. 78, 724 (2001)

    Article  Google Scholar 

  31. T. Prokofyeva, M. Seon, J. Vanbuskirk, M. Holtz, S.A. Nikishin, N.N. Faleev, H. Temkin, S. Zollner, Phys. Rev. B 63, 125313 (2001)

    Article  Google Scholar 

  32. VYu. Davydov, YuE Kitaev, I.N. Goncharuk, A.N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M.B. Smirnov, A.P. Mirgorodsky, R.A. Evarestov, Phys. Rev. B 58, 12899 (1998)

    Article  Google Scholar 

  33. R. Dalmau, S. Craft, B. Moody, R. Schlesser, S. Mita, J. Xie, R. Collazo, A. Rice, J. Tweedie, Z. Sitar, CS MANTECH Conference, Palm Springs, California, May 16th–19th, 2011, p. 153

  34. V. Ivantsov, A. Volkova, ISRN Condens. Matter Phys. (2012). doi:10.5402/2012/184023

    Google Scholar 

  35. D. Zhuang, J.H. Edgar, Mater. Sci. Eng. R 48, 1 (2005)

    Article  Google Scholar 

  36. R. Kirste, S. Mita, L. Hussey, M.P. Hoffmann, W. Guo, I. Bryan, Z. Bryan, J. Tweedie, J. Xie, M. Gerhold, R. Collazo, Z. Sitar, Appl. Phys. Lett. 102, 181913 (2013)

    Article  Google Scholar 

  37. S. Keller, N. Fichtenbaum, F. Wu, G. Lee, S.P. DenBaars, J.S. Speck, U.K. Mishra, Jpn. J. Appl. Phys. 45, L322 (2006)

    Article  Google Scholar 

  38. M. Harada, Y. Ishikawa, T. Saito, N. Shibata, Jpn. J. Appl. Phys. 42, 2829 (2003)

    Article  Google Scholar 

  39. A. Severino, M. Camarda, S. Scalese, P. Fiorenza, S. Di Franco, C. Bongiorno, A. La Magna, F. La Via, Appl. Phys. Lett. 95, 111905 (2009)

    Article  Google Scholar 

  40. T.D. Moustakas, in Gallium Nitride and Related Materials, MRS Symposia Proceedings No. 395, ed. by R.D. Dupuis et al. (Materials Research Society, Pittsburgh, 1996), p. 111

  41. N.B. Singh, B. Wagner, A. Berghmans, D.J. Knuteson, S. McLaughlin, D. Kahler, D. Thomason, M. King, Cryst. Growth Des. 10, 3508 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank SiCrystal AG, Nürnberg, for providing SiC substrates for this work. The financial support given by the Bavarian Research Foundation (BFS) through research project (No. 890/09) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Sumathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumathi, R.R., Gille, P. Role of SiC substrate polarity on the growth and properties of bulk AlN single crystals. J Mater Sci: Mater Electron 25, 3733–3741 (2014). https://doi.org/10.1007/s10854-014-2083-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2083-z

Keywords

Navigation